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Preface

One fundamental paradigm in engineering is to break a structure into simpler
components in order to simplify test and analysis. In the numerical world, this
concept is the basis for finite element discretization and is also used in model
reduction through substructuring. In experimental dynamics, substructuring
approaches such as Transfer Path Analysis (TPA) are commonly used, although the
subtleties involved are perhaps not always adequately appreciated. Recently, there
has been renewed interest in using measurements alone to create dynamic models
for certain components and then assembling them with numerical models to predict
the behavior of an assembly. Substructured models are also highly versatile; when
only one component is modified, it can be readily assembled with the unchanged
parts to predict the global dynamical behavior. Substructuring concepts are critical
to engineering practice in many disciplines, and they hold the potential to solve
pressing problems in testing and modeling structures where nonlinearities cannot be
neglected.

This book originates from lecture notes created for a short course in Udine, Italy
in July 2018. We will review a general framework, which can be used to describe a
multitude of methods and the fundamental concepts underlying substructuring. The
course was aimed at explaining the main concepts as well as specific techniques
needed to successfully apply substructuring both numerically (i.e., using finite
element models) and experimentally. The course centered around the following
topics, which range from classical substructuring methods to topics of current
research such as substructuring for nonlinear systems:

1. Introduction and motivation.
2. Primal and dual assembly of structures.
3. Model reduction and substructuring for linear systems including Guyan and

Hurty/Craig–Bampton reduction, McNeal, Rubin, Craig–Chang interface
reduction methods, and model reduction in the state space.

4. Experimental–analytical substructuring including frequency-based substructur-
ing or impedance coupling, substructure decoupling methods including the
transmission simulator method, measurement methods for substructuring, the

v
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virtual point transformation, state-space substructuring, and an overview of finite
element model updating (a common alternative to experimental substructuring).

5. Industrial applications and related concepts including Transfer Path Analysis
and finite element model updating.

6. Model reduction and substructuring methods for nonlinear systems are high-
lighted with a focus on geometrically nonlinear structures and nonlinearities due
to bolted interfaces.

This text was designed to provide practicing engineers or researchers such as
Ph.D. students with a firm grasp of the fundamentals as well as a thorough review
of current research in emerging areas. The reader is expected to have a solid
foundation in structural dynamics and some exposure to finite element analysis. The
material will be of interest to those who primarily perform finite element simula-
tions of dynamic structures, to those who primarily focus on the modal test, and to
those who work at the interface between test and analysis.

Udine, Italy Matthew S. Allen
July 2018 Daniel Rixen

Maarten van der Seijs
Paolo Tiso

Thomas Abrahamsson
Randall L. Mayes

vi Preface
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Chapter 1
Introduction and Motivation

Abstract “Divide and Conquer” is a paradigm that helped Julius Cesar to dominate
on the wide Roman Empire. The power of dividing systems, then analyze them as
parts before combining them in an assembly, is also an approach often followed in
science and engineering. In this introductory chapter,we shortly discuss themain idea
behind domain decomposition and substructuring applied to mechanical systems.—
Chapter Author: Daniel Rixen

1.1 Divide and Conquer Approaches in the History
of Engineering Mechanics

The work of engineers consists of understanding systems in order to build new
solutions or optimize the existing ones. To analyze systems, it is very common and
efficient to decompose them into subcomponents. This reduces the complexity of the
overall problem by considering first its parts and can provide very useful insight for
optimizing or troubleshooting intricate structures. In this introductory chapter, the
general idea of substructuring is discussed and an overview of the topics treated in
these lecture notes is given.

One often refers to Schwarz (1890), who proved the existence and uniqueness of
the solution of a Poisson problem on a domain that was a combination of a square
and a circle. By considering the problem as two separate problems on the simple
overlapping square and circular domains for which existence and uniqueness of the
solution were already known, and devising an iteration strategy between the two
domains with guaranteed convergence, he could conclude his very important proof.
The algorithm that he devised as a means for his proof is still used today, underlying
some very popular solution strategies on multiprocessor computers (see for instance
Toselli and Widlund 2006).

But in essence, approximation techniques such as the Rayleigh–Ritz method
(Rayleigh 1896; Ritz 1909; Géradin and Rixen 2015), where the solution space is
approximated by a reduced number of admissible functions, can also be considered
as divide and conquermethods: the solution space is decomposed into functional sub-
spaces inwhich an approximate solution can be found. The Finite Element technique,

© CISM International Centre for Mechanical Sciences 2020
M. S. Allen et al., Substructuring in Engineering Dynamics,
CISM International Centre for Mechanical Sciences 594,
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2 1 Introduction and Motivation

pioneered bymathematicians like Courant (1943), Courant andHilbert (1953), can in
fact be seen as a clever application of the Rayleigh–Ritz technique on small region of
the computational domain, resulting therefore in not only a function decomposition
of the problem within the element, but also a spatial decomposition of the problem
as the physical domain is broken into elements.

Today when we consider substructuring, most often we envision dividing a finite
element model into subcomponents that each contain many elements. This substruc-
turing approach was developed in the 60s, motivated by the need to solve structural
problems in aerospace and aeronautics of several tens of nodes (considered to be very
large problems at that time, given the fact that computers were just arising). Hence,
the idea was to add another level of decomposition and reduction by subdividing the
mesh of a finite element model into substructures and to represent the dynamics per
substructure in a reduced and approximate way. Some of the substructuring tech-
niques still commonly used today originate from that time where memory and CPU
power were very limited.

Later, in the 80s and especially in the 90s, solving very large problems using
domain decomposition became a very active research topic. In order to efficiently
use the computational power of newmultiprocessormachines, it was essential tomin-
imize the communications between processing units and to ensure that each CPU
was fed with enough work that could be done independently. Domain Decomposi-
tion is the paradigm to achieve this, by letting each CPU solve the local problems
of each domain and searching for the global solution by iterating on the interface
solutions (Toselli andWidlund 2006). Nowadays, high-performance computing tech-
niques solve engineering problems of close to a billion degrees of freedom on several
hundreds of thousands of processors thanks to that paradigm (Toivanen et al. 2018).

The last wave of intensive research in substructuring came at the beginning of
the twenty-first century, this time not directly powered by exponential grows of
computing power, but by significant progress in techniques to accurately measure
the dynamics of components. Experimental substructuring aims to build models of
assemblies from the data measured on components, possibly in combination with
numerical models. Although the theory of experimental dynamic substructuring is
essentially the same as its analytical counterpart, many novel techniques needed to
be developed in order to alleviate the adverse effects of measurement errors (even if
strongly reduced thanks to novel sensing and acquisition techniques) when building
a model based on experimentally characterized components.

1.2 Advantages of Substructuring in Mechanical
Engineering

In mechanical engineering practice, substructuring techniques are useful for the fol-
lowing cases:

• When working on a large project (for example, the design of an aircraft), different
groups and departments work on different components. In that case, it is essential
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that each team can concentrate on the modeling of their part, and then have an
efficient means for assembling to other components in order to predict the overall
dynamics and optimize their design accordingly.

• In industry, it is common that models of subsystems must be shared. A classical
example is the coupled load analysis of the assembly of a satellite and a launcher:
in that case, the satellite company needs to share its model with the launcher
operator in order to perform a global dynamic analysis and guarantee that vibration
limits will not be crossed. In that case, exchanging information can be efficient if
the different components have been modeled separately in such a way that their
complexity (number of degrees of freedom) is low and such that they can be
assembled on their interface.

• In many engineering problems, parts of the system to be analyzed are significantly
more complex than the rest. In structural dynamics, for instance, parts of themodel
could be highly nonlinearwhereas the remainder can be considered as linear. In that
case, it is very advantageous to substructure the problem in such a way that only
the parts that are nonlinear are treated with the appropriate techniques, whereas
the linear parts are, for instance, condensed once and for all. Such a subdivision of
the problem into substructures of different complexities can greatly improve the
analysis speed and give better insight into the dynamic behavior.

• When optimizing the design during the development of a new product, or during an
improvement of an old design, one often wants to modify only a small number of
parts (for instance, change the bushings connecting the power train of a car to the
chassis in order to modify the noise and vibration harshness). When the parts that
will not be modified are available as substructures and already precomputed (e.g.,
their dynamics on the interface is known), then recomputing the global behavior
when only the components under optimization are changed requires a significantly
reduced cost, enabling much faster design cycles.

• In experimental testing, it is not always possible to test the full system; often
system-level analysis is needed before all of the components have been manufac-
tured. In other cases, it is impossible to test the full assembly because appropriately
exciting a large structure would require forces that are beyond the capabilities of
existing shakers. It is then very advantageous to experimentally characterize the
structure part by part. This allows troubleshooting problems arising from the local
dynamics in those parts, but also to build a full model by assembling the measured
parts using experimental substructuring techniques.

• When parts of the system have not yet been built, it is possible to combine the
measured dynamics of hardware components with other parts that are modeled
only numerically (hybrid substructuring). In some cases, the combination in real
time of the transient response of a hardware component (the physical substructure)
with the dynamics of a numerical substructure is essential to predict the dynamics
of the hardware part in realistic conditions. Such hardware-in-the-loop tests (also
called Real-Time Substructuring, Hybrid Testing or Cyber-Physics) allow testing
very complex systems by having only a part in the lab, the rest of the system being
co-simulated in real time.
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• Substructuring methods open new opportunities for efficient analyses and design,
including the development of digital twins, or a model that can be used to monitor
the health of a system.

These are only a few examples of cases in which substructuring can be advan-
tageous. For these and other reasons, substructuring has attracted a lot of attention
over the years and is yet today a very active research field.
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Chapter 2
Preliminaries: Primal and Dual
Assembly of Dynamic Models

Abstract There are several ways to formulate the dynamics of a substructure.
The different domains in which the dynamics can be described will be reviewed
since the manner in which substructures are characterized will later determine the
substructuring methodology that can be applied. In addition to how the substructures
are formulated, the way in which the coupling/decoupling problem is expressed will
allow us in the subsequent chapters to develop different numerical and experimental
techniques. Two conditions must be satisfied on the interface between substructures:
a condition on the displacement field (compatibility) and on the interface stresses
(force equilibrium). Those conditions can be accounted for following several differ-
ent formulations, all mathematically equivalent, but each leading to different numer-
ical methods, experimental approaches, and approximation techniques, as will be
explained in the following chapters. In this chapter, we outline the basic concepts of
the so-called three-field formulation, dual and primal assembly.—Chapter Author:
Daniel Rixen

2.1 The Dynamics of a Substructure: Domains
of Representation

In these lecture notes, we assume that the problem has already1 been discretized
(using, for instance, an appropriate Finite Element or Boundary Element formula-
tion). The discretized problem describing the dynamics in a substructure Ω(s) can
be written in the form

M(s)ü(s) + f (s)
nl

(
u̇(s),u(s)

) = f (s) + g(s). (2.1)

The superscript (s) indicates that the equation is written for a given substructure s.
M denotes the discretized mass matrix,2 fnl the discretized nonlinear internal force

1A similar classification can be found in a different form in de Klerk et al. (2008).
2Here we assume that the mass matrix is constant. This is not the case for models in multibody
dynamics for instance Géradin and Cardona (2001), but this will not be considered here.
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function, which depends in general on the nodal velocities and displacements u̇
and u. Two types of forces are applied on the substructures: the externally applied
forces, denoted f , and the forces due to interactions between substructures, denoted
g. The latter are, in fact, internal forces when considering the entire structure, but are
considered as applied forces when analyzing the substructure problem.

In case of small displacements, the internal forces fnl can be linearized and the
substructure dynamics are described by

M(s)ü(s) + C(s)u̇(s) + K(s)u(s) = f (s) + g(s), (2.2)

where C(s) = ∂f (s)
nl /∂u̇(s) and K(s) = ∂f (s)

nl /∂u(s) are the linearized (tangential)
damping and stiffness matrices typically computed around equilibrium positions
of the system (Géradin and Rixen 2015).

The unknowns u in Eqs. (2.1), (2.2) express the behavior of a substructure in terms
of its physical displacements (discretized at nodes) in the time domain. Therefore,
we will refer to them as the equations in the physical and time domain. The first
qualification refers to the spatial meaning of the unknowns whereas the second refers
to the spectral description of the problem. Another spatial and spectral description of
the dynamic problem will now be introduced since the way in which the problem is
described has an impact onwhatmethod can be applied for reduction or experimental
assembly, aswill be shown throughout these lecture notes.A summary of the different
domains in which the substructure dynamics can be considered is given in Fig. 2.1.
The substructure data in the different domains can be obtained either from numerical
models, from experimentally measured data or from a mix of both. The different
aspects are explained next.

Fig. 2.1 Schematic overview of substructuring domains (van der Seijs 2016)
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2.1.1 Spatial Descriptions

Physical Domain (Continuous and Discrete)

The description outlined in (2.2) expresses the dynamics of the substructure using
the displacement at a specific nodal location and is referred to as a physical repre-
sentation. Note that representation in the physical domain can be either discretized
(as assumed in this text) or continuous. In the later case, the unknown is the physical
response field and the associated equations are partial differential equations describ-
ing the (nonlinear) continuous dynamics in a body. This will not be considered here.

Modal Domain (Reduced and Unreduced)

It is often handy and useful to consider the unknowns of a dynamic problem as a
combination of vectors of a (sub)space. The most well-known subspace representa-
tion is probably the one obtained by mode superposition. The free vibration modes
of a substructure defined by the eigenvalue problem (Géradin and Rixen 2015)

(
K(s) − ω(s)

i

2
M(s)

)
φ

(s)
i = 0, (2.3)

where ω(s)
i are the eigenfrequencies of the free–free substructure and φ

(s)
i the asso-

ciated eigenmodes that have the fundamental property of being mass and stiffness
orthogonal, namely,

φ
(s)
i

T
K(s)φ

(s)
j = ω(s)

i

2
δi j , (2.4)

φ
(s)
i

T
M(s)φ

(s)
j = δi j , (2.5)

where we have assumed that the modes amplitudes have been chosen to be mass-
normalized and where δi j is the Kronecker symbol such that

δi j = 1 if i = j.

δi j = 0 if i �= j.

Amodal representation of the substructure is then obtained by the change of variable

u(s) =
n(s)∑

i=1

φ
(s)
i η(s)

i = Φ(s),η(s) (2.6)

where n(s) is the number of degrees of freedom in substructure (s). Here, η(s)
i are

the amplitudes of the modal component of the response and are often called modal
coordinate of substructure (s). Often, we will use a matrix notation as in the second
equality of (2.6), where Φ(s) is a matrix containing in its columns the vibration
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modes and η(s) is a uni-column matrix containing all modal coordinates. Usually,
only a subset of modes is considered in order to have an approximated but reduced
representation of the substructure. This will be discussed in later chapters.

In general, the response u(s) can be represented as a combination of n(s) indepen-
dent vectors and we write

u(s) =
n(s)∑

i=1

v(s)
i q(s)

i = V(s)q(s), (2.7)

where V(s) is a square matrix containing the basis vectors for the desired change of
variables. Substituting in the dynamic equation (2.2) and premultiplying by V(s)T to
project the equations onto the same space, we obtain

V(s)TM(s)V(s)q̈(s) + V(s)TC(s)V(s)q̇(s) + V(s)TK(s)V(s)q(s) = V(s)T f (s) + V(s)T g(s),

(2.8)
which is usually written as

M̃
(s)
q̈(s) + C̃

(s)
q̇(s) + K̃

(s)
q(s) = f̃

(s) + g̃(s)
, (2.9)

where the tilde superscript indicates that the matrices and vectors pertain now to a
representation in a transformed space. The representation vectors stored in V(s) can
be any set of independent vectors, in particular, they can be chosen as the vibration

modesΦ(s), in which case the transformed mass and stiffness matrices M̃
(s)

and K̃
(s)

will be diagonal.
The representation (2.9) will often be referred to as themodal representation, even

when the base vectors are not vibration modesΦ(s) but general representation modes
V(s). The associated degrees of freedom q̇(s) are then called generalized degrees
of freedom or modal coordinates and do in general not represent the solution at a
particular physical location.

In case an incomplete basis is used for the representation, namely, when fewer
modes than the number n(s) of degrees of freedom in the substructure are used, the
modal representation represents the dynamics in a reduced subspace and in general
only in an approximate way (this will be discussed in detail in Chap.3). We will then
call the representation a reduced modal representation.

2.1.2 Spectral Representation

Time Domain (Continuous and Discrete)

In the form of Eq. (2.2), the unknown dynamic response is considered a function of
time and we say that, from a spectral point of view, the equations are expressed in
the time domain.
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The dynamic equation (2.2) considers the spatial unknowns to be a continuous
function of time and the dynamics are expressed as ordinary differential equations in
time (the space having already be discretized in that equation). As was done for the
spatial domain, time can also be discretized usingmethods related to finite differences
(typically variants of the Newmark time integration scheme in structural dynamics
(Newmark 1959, Chung and Hulbert 1993, Brüls and Arnold 2008, Géradin and
Rixen 2015), but other approaches can also be applied such as Finite Elements in
time or variational-based approaches (Lew et al. 2004)). When discretized in time,
we will still consider the resulting equations as being in the time domain since the
unknowns are the responses at discrete time instances. The equations are then alge-
braic equations that are typically solved in a recursive form (time stepping), given
the fact that the time problem is typically an initial value problem.3

Frequency Domain (Reduced and Unreduced)

Similar to the decomposition of the spatial response in component modes, the time
dependency of the response can also be decomposed into a combination of time
contributions. The most classical one is the Fourier decomposition4 that writes the
time function of the response in terms of harmonic functions. Using complex number
notations, the Fourier decomposition can be written as

u(s)(t) =
∫ ∞

−∞
ū(s)(ω) e−iωt dω, (2.10)

where i is to be understood as the imaginary unit number. This decomposition is
very suitable for linear systems since replacing in (2.2) and using the orthogonality
properties of harmonic functions, the harmonic component u(ω) can be computed
individually from the harmonic dynamic equation:

(−ω2M(s) + iωC(s) + K(s)
)
ū(s) = f̄

(s) + ḡ(s) ω ∈ ] − ∞,+∞[, (2.11)

where f̄
(s)

and ḡ(s) are the Fourier components of the forces, for instance,

f̄
(s) = 1

2π

∫ ∞

−∞
f (s)(t) eiωt dt. (2.12)

The dynamic equation in the frequency domain (2.14) is also often written as

Z(s)ū(s) = f̄
(s) + ḡ(s) (2.13)

3For an interesting matrix description of time discretization see Rixen and van der Valk (2013),
van der Valk and Rixen (2014).
4Note that other base functions in time can be used (such as wavelets), but this will not be discussed
here.
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where
Z(s)(ω) = −ω2M(s) + iωC(s) + K(s) (2.14)

Z(s) is a dynamic stiffnessmatrix and is a function of the frequencyω. In this form, ū(s)

is the complex amplitude of the harmonic displacement response (or equivalently the
Fourier component of the transient response).A similar equation canbewritten for the
amplitude of the harmonic velocity or accelerations in which case the operator Z(ω)

is commonly called the mechanical impedance or the apparent mass, respectively.
The dynamic relation can also be inverted and written

ū(s) = Y(s)
(
f̄
(s) + ḡ(s)

)
, (2.15)

where
Y(s)(ω) = Z(s)(ω)−1 = (−ω2M(s) + iωC(s) + K(s)

)−1
(2.16)

Y(s) is a Frequency Response Function (FRF) matrix and is often called the admit-
tance or dynamic flexibility, or more specifically receptance, mobility, or acceler-
ance/inertance if ū(s) are displacements, velocities or accelerations respectively.

Obviously, in practice, the harmonic components are calculated only for a finite
discrete number of frequencies ω, and (2.10) is approximated by the Discrete Fourier
Decomposition

u(s)(t) =
Nω∑

k=−Nω

ū(s)
k eiωk (2.17)

choosing a frequency range covering the spectral range of the excitation. It is note-
worthy that the decomposition in (2.17) is comparable to the decomposition of the
space function of the response in (2.6) and can also be seen as a reduction of the
transient response in the time domain. It is an approximation unless the excitation
can be exactly represented by a finite combination of harmonics.

Laplace Domain

Another often used representation of the time evolution of the dynamic response is
in terms of the Laplace components. The idea is to look for the dynamic response
when modulated with a decreasing exponential function, namely,

ū(s)(s) = L
(
u(s)(t)

)
=

∫ ∞

0
e−stu(s)(t) dt (2.18)

This transformation changes the differential equation in time into an algebraic
equation in the Laplace variable s thanks to the fact that Laplace transforms of time
derivatives of ū(s)(t) can be written in terms of ū(s)(s) using integration by parts. For
instance,

L
(
ü(s)(t)

)
= s2ū(s)(s) − su(s)(t = 0) − u̇(s)(t = 0)
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Clearly, there is a similarity between Laplace and Fourier transforms since (2.18)
becomes a Fourier transform if s is taken as imaginary. Themain difference is that the
inverse transform is trivial for the Fourier domain (leading to the frequency domain
decomposition (2.10) or (2.17)), whereas finding the inverse Laplace transform is far
more difficult and not general. In structural dynamics, Laplace transforms are used
for highly transient problems that cannot efficiently be represented by harmonic
superposition, such as impact responses and shock propagations (see for instance
Sect. 4.3.2 in Géradin and Rixen (2015)).

2.1.3 State Representation

Displacement Space

In addition to representing the space and spectral behavior of the system in dif-
ferent domains as explained above, the very state of the system can be described in
mainly two different manners: either one sees the displacements as the only indepen-
dent unknowns (velocities and accelerations being dependent on the displacement
through derivatives) or the velocities are seen as additional independent variables
for which the derivative relation to the displacement is explicitly expressed in the
formulation. For the first approach, often used in structural dynamics, the dynamics
of the system are described by a single set of second-order equations as in (2.1) (for
nonlinear structures) or (2.2) (for linear ones).

State-Space Representation

In the second case, namely, the velocities are seen as additional independent variables,
the state of the system is described both by the displacements and the velocities:

x(s)(t) =
[
u(s)(t)
u̇(s)(t)

]
(2.19)

and the associated linear dynamic equation can for instance be written as

[
I(s) 0
0 M(s)

]
ẋ(s) =

[
0 I(s)

−K(s) −C(s)

]
x(s)(t) +

[
0

f (s) + g(s).

]
(2.20)

In this state-space representation the number of equations has doubled, but the order
of the differential is now reduced to one. This representation is often used especially
in control. This form is also commonly used in structural dynamics when strong
damping is present since the concept of modes of vibration properly generalizes only
when writing the system in the State Space (see, for instance, Sect. 3.3 in Géradin
and Rixen (2015)).
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2.1.4 Summary of Representation Domains

From the short summary of the formulation of the structural dynamics problem, it
is clear that many variants to describe the problem, combining a spatial, spectral,
and state representation, can be constructed. In Fig. 2.1, the different aspects are
shown graphically and relations between them are summarized. Depending on the
representation chosen, numerical and experimental techniques in substructuring can
significantly differ as will be seen in these lecture notes.

2.2 Interface Conditions for Coupled Substructures

Let us consider again the linearized dynamic equilibrium equation (2.11) of a sub-
structure in the physical space and in the frequency domain5

Z(s)ū(s) = f̄
(s) + ḡ(s) s = 1 . . . Nsub, (2.21)

where Nsub is the total number of substructures in the system.
It is common to write the equilibrium of all substructures in a block matrix form

as
Zū = f̄ + ḡ (2.22)

with the definitions

Z =
⎡

⎢
⎣

Z(1) 0
. . .

0 Z(Nsub)

⎤

⎥
⎦ (2.23)

ū =
⎡

⎢
⎣

ū(1)

...

ū(Nsub)

⎤

⎥
⎦ f̄ =

⎡

⎢⎢
⎣

f̄
(1)

...

f̄
(Nsub)

⎤

⎥⎥
⎦ ḡ =

⎡

⎢
⎣

ḡ(1)

...

ḡ(Nsub).

⎤

⎥
⎦

The dimension of these block matrices and block vectors is (
∑

s n
(s)) × (

∑
s n

(s))

and (
∑

s n
(s)) × 1 respectively.

Since the substructures are part of a same assembly, two interface conditions need
to be satisfied: interface equilibrium and compatibility.6

5Expressing the coupling of substructures in other domains (modal, time, state space …) will be
discussed in later chapters and use exactly the same approach.
6These lecture notes dealwith structural problems.Nevertheless, the general theory is also applicable
to the coupling of other physical domains such as acoustics or thermal problems.



www.manaraa.com

2.2 Interface Conditions for Coupled Substructures 13

2.2.1 Interface Equilibrium

The interface equilibrium requires that the interface forces, ḡ(s), which are internal
forces between the substructures, sum to zero when assembled. This is merely a
manifestation of Newton’s “action–reaction" principle. Considering, for instance, an
interface Γ (sr) between two substructures s and r , one could express this condition
as7

g(s)
b + g(r)

b = 0 on Γ (sr), (2.24)

g(s)
i = 0 g(r)

i = 0, (2.25)

where the subscript b indicates a restriction of the DOF to the boundary and where
we assumed that the DOF are numbered in the same manner on both sides of the
interface. The subscript i denotesDOF that are not on a boundary and are thus internal
DOF. On internal DOF, no connecting forces should exist.

In practice, the numbering of the DOF on the interface will not match across the
interfaces and in addition more than two substructures can intersect on an interface
(so-called cross-points in 2Dand3D, and edges in 3D).Hence in general, the interface
equilibrium condition needs to be expressed using Boolean localization matrices
L(s)T of dimension n × ns that combine the forces on either side of the interface to
satisfy force equilibrium. Interestingly, these localizationmatrices alsomap the DOF
of substructure s to a global and unique set of n global DOF, as will be elaborated
later. In general, the interface equilibrium thus is written as

Nsub∑

s=1

L(s)T ḡ(s) = 0 . (2.26)

This equilibriumcondition can also bewritten using the blockmatrixLT of dimension
nb × ∑

s n
s acting on the set of all substructure interface forces

LT ḡ = 0 where LT = [
L(1)T · · · L(Nsub)T

]
(2.27)

7In general, we will assume that the decomposition in substructures generates an interface dis-
cretization that is conforming and matching, namely, that the shape functions used on either side of
the interface are identical and that the nodes coincide. In case of nonconforming or nonmatching
interfaces, the theory used in these lecture notes are still generally applicable, but the assembly
operators are then no longer Boolean. Indeed, going back to the variational principle underlying
the discretized problem, the part related to the compatibility condition over an interface Γ can be
written as ∫

Γ

μT vdΓ

where μ and v are the field. More details about nonmatching interfaces can be found, for instance,
in Rixen (1997).
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� To illustrate the notation, consider the examples in Fig. 2.2. The green num-
bers indicate the global nodes forwhich the interface force conditions arewritten
(i.e., the row number in the localization matrices).

Fig. 2.2 Examples of assemblies: substructure DOFs and interface forces

For the beam example in Fig. 2.2a, the localization matrices are

L(1)T =
⎡

⎣
1
0
0

⎤

⎦ L(2)T =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ L(2)T =
⎡

⎣
0
0
1

⎤

⎦

and the interface equilibrium condition can be written as

LT ḡ =
⎡

⎣

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦

⎤

⎦

⎡

⎢⎢⎢⎢⎢
⎢
⎣

[
ḡ(1)
2

]

⎡

⎣
ḡ(2)
1

ḡ(2)
2

g(2)
3

⎤

⎦

[
ḡ(3)
1

]

⎤

⎥⎥⎥⎥⎥
⎥
⎦

= 0. (2.28)

For the second example in Fig. 2.2b, we have two degrees of freedom per
node and the localization matrix can be written as

LT = [
L(1) L(2) L(3)

]
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LT =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

�

These matrices are in fact identical to the localization matrices used in Finite
Element codes to assemble elementary matrices in the global system, however here
the localization is not written for one element but for one substructure (that one
could consider as a super-element or macro-element). Obviously, it is not efficient
to store these Boolean matrices as written above, but rather one should store them
as sparse matrices, or even better one should construct the mapping tables based on
the connectivity of the substructures over the interfaces.

2.2.2 Interface Compatibility

The second condition that needs to be satisfied on the interface is that DOF pertaining
to some structural node have the same response on both sides of the interface, or in
other words that the DOF are compatible on the interface. Considering the DOF of
two substructures s and r coupled on the interface Γ (sr), the compatibility condition
becomes

ū(s)
b − ū(r)

b = 0 on Γ (sr)

where, as before, the subscript b indicates that the compatibility is written for the
boundary DOF and where we assumed that the DOF are numbered identically on
both sides of the interface.

In general, the numbering on the interface does not coincide and therefore the
compatibility conditions are expressed using signed Boolean matrices B(s). When
operating on ū(s), these operators extract the interfaces DOF and give them an oppo-
site sign on each side of the interface. The interface compatibility can then be written
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in the following general form:

Nsub∑

s=1

B(s)ū(s) = 0 (2.29)

One can use a block matrix notation to write this condition also in the form

Bū = 0 where B = [
B(1) · · · B(Nsub).

]
(2.30)

These equations can be understood as compatibility constraints imposed onto the
independent sets of DOF in the substructures. The matrices B(s) have dimension
nλ × n(s), where nλ is the number of interface compatibility constraints that need to
be imposed.

� Example: Boolean Compatibility Matrix
To illustrate this notation, consider again the examples of Fig. 2.2.

Fig. 2.3 Examples of assemblies: interpretation of the Lagrange multipliers

For the beam example, the compatibility condition can be written as

Bū = [
B(1) B(2) B(3)

]
ū =

[[
1
0

] [−1 0 0
0 0 1

] [
0

−1

]]

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

[
ū(1)
2

]

⎡

⎣
ū(2)
1

ū(2)
2

u(2)
3

⎤

⎦

[
ū(3)
1

]

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

= 0. (2.31)
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The side on which the entry in B is positive and negative can be chosen freely.
The interpretation of B and its associated Lagrange multipliers is depicted in
Fig. 2.3a.

For the second example in Fig. 2.2, the constraint matrix can be written as

B = [
B(1) B(2) B(3).

]

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎥⎥
⎦

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

The interpretation of B and its associated Lagrange multipliers is depicted in
Fig. 2.3b. Note that the last two constraints are redundant. The compatibility
of node 4 in Ω(1) with node 3 in Ω(2), and of node 1 in Ω(3) with node 3 in
Ω(2) is imposed in lines 3, 4, 5, and 6 of B, so there is no need to impose in
addition the compatibility between node 4 in Ω(1) and node 1 in Ω(3). Adding
this redundant constraint does usually not harm the computation and can even
be helpful for instance in the parallel computing algorithms. �

As for the localization matrixL(s), the constraint matricesB(s) are, in practice, not
stored as full but as sparse, or only connectivity information is used to apply them
to a vector.

To summarize this section, an assembly of substructures in the physical frequency
domain (and similarly in other domains) is obtained by imposing compatibility and
interface equilibrium conditions, leading to the set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Z(s)ū(s) = f̄
(s) + ḡ(s) s = 1 . . . Nsub

Nsub∑

s=1

B(s)ū(s) = 0

Nsub∑

s=1

L(s)T ḡ(s) = 0

(2.32)

or in block matrix form
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⎧
⎨

⎩

Zū = f̄ + ḡ
Bū = 0
LT ḡ = 0

(2.33)

2.3 Primal and Dual Assembly

The form (2.32) (or equivalently (2.33)) of the coupled problem uses two interface
fields, namely, the primal unknowns u per substructure (i.e., on each side of the
interfaces) and the substructure interface forces g called dual unknowns.8 Solving
the dynamic problem of the assembly in the form (2.32) can be expensive since many
interface unknowns need to be resolved. Hence, these equations can be rearranged in
order to eliminate the interface forces and write the problem in terms of unique inter-
face displacements (primal assembly) or by introducing interface forces satisfying
the interface equilibrium (dual assembly).

2.3.1 Primal Assembly

We can define as primal unknowns for the interface a set of DOF ug that are global
and uniquely defined for the entire structure. The DOF of each substructure are then
obtained by mapping the global set ug to the local DOF of each substructure u(s).
Such a mapping was already introduced in the previous section, (2.26), to map the
local interface forces to a global set. The same mapping, but now from the global
DOF to the local ones can be used to write

u(s) = L(s)ug or u = Lug. (2.34)

If the substructure DOF are obtained from a unique set as described above, they
automatically satisfy the compatibility conditions that matching interface DOFmust
be equal. Hence

BLug = 0 ∀ ug. (2.35)

This relation mathematically means that L represents the nullspace of the constraint
matrix B:

L = null(B) (2.36)

8In these lecture notes, we will introduce the coupling conditions using basically a two field
approach. A more general three-field approach can also be considered but will not be discussed
here. See for instance Voormeeren (2012).
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� In the example of the beam in Fig. 2.2a for which Lwas found in (2.28), this
leads to

⎡

⎢⎢⎢⎢
⎢⎢
⎣

[
ū(1)
2

]

⎡

⎣
ū(2)
1

ū(2)
2

ū(2)
3

⎤

⎦

[
ū(3)
1

]

⎤

⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

[
1 0 0

]

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

[
0 0 1

]

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎣
ū1
ū2
ū3

⎤

⎦ (2.37)

Clearly, it can be seen that the substructure DOF are “drawn" from a global and
unique set of DOF and thus automatically satisfy the compatibility constraint
on the interface: with the compatibility constraint matrix B obtained in (2.31),
one verifies that

Bu = BLug =
[[

1
0

] [−1 0 0
0 0 1

] [
0

−1

]]

⎡

⎢⎢⎢⎢⎢
⎣

[
1 0 0

]

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

[
0 0 1

]

⎤

⎥⎥⎥⎥⎥
⎦
ug = 0

�

When choosing a unique set of DOF as in (2.34), the coupled problem (2.33) can
be simplified and written as {

ZLug = f̄ + ḡ
LT ḡ = 0,

(2.38)

where the compatibility condition is not present anymore since it is automatically
verified. This expression is sometimes denoted as the Neumann–Dirichlet form of
the coupled problem.

The interface forces g can be eliminated from this relation by premultiplying
the dynamic equilibrium (first line of (2.38)) by LT , which builds the sum of the
equilibrium equations onmatching nodes. Considering the equilibriumof the internal
forces (second line of (2.38)), the coupled problem can finally be expressed as

Zgug = fg with Zg = LTZL and fg = LT f̄ . (2.39)

This form is generally referred to as the primal assembly of the coupled problem
and matrix LTZL is the primal-assembled impedance of the global system. This
assembly is similar to the assembly of finite elements.
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� To illustrate this process, consider again the first example in Fig. 2.2a, with
the matrix L given in (2.28). The assembled impedance matrix for this example
then writes

Zg = LTZL

=
⎡

⎣

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦

⎤

⎦

⎡

⎢⎢
⎢⎢⎢
⎣

[
Z (1)
22

]
0 0

0

⎡

⎣
Z (2)
11 Z (2)

12 Z (2)
13

Z (2)
21 Z (2)

22 Z (2)
23

Z (2)
31 Z (2)

32 Z (2)
33

⎤

⎦ 0

0 0
[
Z (3)
11

]

⎤

⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

[
1 0 0

]

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

[
0 0 1

]

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=
⎡

⎣
Z (1)
22 + Z (2)

11 Z (2)
12 Z (2)

13

Z (2)
21 Z (2)

22 Z (2)
23

Z (2)
31 Z (2)

32 Z (2)
11 + Z (3)

33

⎤

⎦

and the dynamics of the beam are expressed by

Zgug = = fg =⇒

⎡

⎣
Z (1)
22 + Z (2)

11 Z (2)
12 Z (2)

13

Z (2)
21 Z (2)

22 Z (2)
23

Z (2)
31 Z (2)

32 Z (2)
11 + Z (3)

33

⎤

⎦

⎡

⎣
ū1
ū2
ū3

⎤

⎦ =
⎡

⎣
f̄ (1)
2 + f̄ (2)

1

f̄ (2)
2

f̄ (2)
3 + f̄ (3)

1

⎤

⎦

�

2.3.2 Dual Assembly

Let us start again from the coupled form (2.32) (or equivalently (2.33)), but instead
of satisfying a priori the interface compatibility as in the primal assembly, we satisfy
a priori the interface equilibrium.9 This can be achieved by choosing coupling forces
as

9For the description of the problem, it does obviously not manner if one first satisfies the equilibrium
or the compatibility. This only determines which equation in the three-field formulation (2.32) is
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g = −BTλ (2.40)

Note that, since BL = 0 and thus LTBT = 0, such coupling forces automatically
satisfy the interface equilibrium:

LTBTλ = 0 ∀λ (2.41)

The minus in this definition is a choice to obtain a symmetric form later. The
expression (2.40) can also be written substructure wise as

⎡

⎢
⎣

g(1)

...

g(Nsub)

⎤

⎥
⎦ = −

⎡

⎢
⎣

B(1)

...

B(Nsub)

⎤

⎥
⎦ λ (2.42)

showing clearly that the coupling forces are generated from a unique set of interface
forces, whose intensities are given by λ and are attributed, with the appropriate
positive or negative sign, to the substructure interface. The interface force intensities
λ are unknowns pertaining to the interface. The size nλ of λ is equal to the number
of interface compatibility conditions on the interface.

Substituting the coupling forces by their form (2.40), the coupled problem can be
written as ⎧

⎪⎪⎨

⎪⎪⎩

Z(s)ū(s) = f̄
(s) + B(s)Tλ s = 1 . . . Nsub

Nsub∑

s=1

B(s)ū(s) = 0,
(2.43)

where the interface equilibrium no longer appears since it is automatically satisfied
given our choice (2.40). In block matrix form, we can write

{
Zū + BTλ = f̄
Bū = 0

(2.44)

which is often put in the symmetric form

[
Z BT

B 0

] [
ū
λ

]
=

[
f̄
0

]
. (2.45)

One observes thatλ can be interpreted as theLagrangemultipliers associatedwith the
compatibility constraint (see the general theory of constrained systems in dynamics,
for instance, in Géradin and Rixen (2015)).

eliminated. The end result will be identical, but the mathematical form and the approximations that
can be applied will be depending on the form that will be solved.
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� To illustrate this form, consider again the first example in Fig. 2.2a, with the
matrix B given in (2.31). The dually assembled form is then written as

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

[
Z (1)
22

]
0 0

[
1 0

]

0

⎡

⎣
Z (2)
11 Z (2)

12 Z (2)
13

Z (2)
21 Z (2)

22 Z (2)
23

Z (2)
31 Z (2)

32 Z (2)
33

⎤

⎦ 0

⎡

⎣
−1 0
0 0
0 1

⎤

⎦

0 0
[
Z (3)
11

] [
0 −1

]

[
1
0

] [−1 0 0
0 0 1

] [
0

−1

]
0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

[
ū(1)
2

]
⎡

⎣
ū(2)
1

ū(2)
2

ū(2)
3

⎤

⎦

[
ū(3)
1

]

λ1

λ2

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

[
f̄ (1)
2

]
⎡

⎣
f̄ (2)
1

f̄ (2)
2

f (2)
3

⎤

⎦

[
f̄ (3)
1

]

0
0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

Notice that this representation of the system is larger than the primally assem-
bled counterpart, but in this representation the interface forces, λ are explicitly
available. In future sections we shall see that this can be useful. �

2.3.3 Usefulness of Different Assembly Formulations

In this section, we have expressed the coupled problem in three different forms that
are recalled in their block matrix form below for clarity:

General form

⎧
⎨

⎩

Zū = f̄ + ḡ
Bū = 0
LT ḡ = 0

(2.33)

Primal Assembly Zgug = fg with Zg = LTZL and fg = LT f̄ (2.39)

Dual Assembly

[
Z BT

B 0

] [
ū
λ

]
=

[
f̄
0

]
(2.45)

To illustrate the primal and dual assembly, Fig. 2.4 shows the assembly of components
with forces or with displacements, and the corresponding matrices.

Each of these representations is mathematically equivalent and, hence, one might
wonder why considering one form or the other might be advantageous. From a
mechanical point of view, the interpretation of these forms is different, and so each
provides different insights. The general form considers each substructure as inde-
pendent (the DOF and coupling forces are defined separately per substructure) and
therefore requires writing all of the interface conditions explicitly. In the primal form,
coupling forces are no longer part of the problem: the only interface unknowns are
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Fig. 2.4 Primal and dual assemble illustration

the interface DOF, which are unique for the entire structure. In the dual form, it is
the interface force amplitudes λ that are unique for the entire structure and represent
the interface unknowns (the interface DOF remaining defined per substructure).

The different mechanical interpretations of the assembly can be used to develop
different numerical and experimental techniques in substructuring. This will hope-
fully become clear in the other chapters of these lecture notes, but here we provide
a brief preview to the various uses of these forms.

Model Reduction (Chap.3) In model reduction by substructuring, the dynamics in
a substructure are approximated by representing the behavior of its physical DOF
in a subspace of representative modes.

– When the primal-assembled form (2.39) is considered, a substructure is seen as
receiving information from its neighboring substructures over the interface DOF
they share. Hence, a natural set of modes for the reduction might correspond to
the static response of the substructure to unit displacements at the interface, and
these could be augmented by vibration modes in which the interface is fixed (i.e.,
the Hurty/Craig–Bampton family of methods naturally arise).

– When the dual assembly form (2.45) is considered, the substructure receives excita-
tion from the neighbors as imposed interface forces. A natural set of representation
modes, in that case, would consist of the static response of the substructure to unit
interface forces and the additional dynamics would naturally be represented by
vibration modes computed with the interface free.

The reduction methods will thus be based on different approximated representa-
tions depending on which mechanical interpretation of the coupling is considered.

Experimental Substructuring (Chap.4) In experimental substructuring, the dynam-
ics of (some) substructures are obtained by measurements. Since in experimental
dynamics one typically measures a component with free interface, applying exci-
tations and measuring the dynamic response, one typically measures dynamic
flexibilities (FRFs), namely the response of the component to excitations. There-
fore, considering the dually assembled form seems more natural. Obviously, the
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measured dynamic flexibility could be inverted and assembled in a primal way
(impedance coupling) which would be mathematically equivalent. In practice
however, since the measured dynamic flexibility of the substructure always con-
tains imperfections or are not complete, an assembly should usually be performed
only in a weak sense: the degrees of freedom on the interface should not be forced
to match exactly, but rather only some simple deformation modes on the interface
should be made compatible, allowing for some local incompatibility. This allevi-
ates the effect of measurement errors in the assembly as will be explained later
(Sect. 4.3).
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Chapter 3
Model Reduction Concepts and
Substructuring Approaches for Linear
Systems

Abstract In this chapter, we give an overview of some of the most common reduc-
tion techniques based on substructuring. Although all techniques follow a similar
approach, the main difference between the methods lies into the basis vectors used
in the approximation subspace to represent the dynamics of each substructure and the
manner in which the substructures are a couple. — Chapter Authors: Daniel Rixen,
Matt Allen, and Thomas Abrahamsson

3.1 Model Reduction—General Concepts (Reduced Basis)

3.1.1 Reduction by Projection

Often, a finite element model is first built for static analysis in order to assess static
deformations and stress levels which might be high especially in small details (stress
concentration areas). Therefore, it is very common to find static models that have
a very refined mesh, hence a high number of degrees of freedom (typically up to
several million). Such very large static models can be solved by means of efficient
solvers, but when it comes to computing free vibration modes, harmonic responses
and/or transient responses, it is required to solve many static-like problems (i.e.,
in the inverse iterations of the eigensolvers or in the time-stepping loop) and the
computing time required is often unacceptable.

Fortunately, for most dynamical problems, such highly refined meshes are not
needed to capture the dynamic behavior. For instance, if we want to compute the
fundamental modes, we know that the first free vibration modes have a rather smooth
deformation and thus a coarser mesh would be sufficient to compute these modes.
Similarly, when computing the dynamic response to external loads which are no
shocks (i.e., which have no high spectral content compared to the eigenfrequency
spectrum of the structure), a coarse mesh yields in most cases accurate results. In
summary, using a coarser representation of the displacement field in the dynamic
model is often acceptable in terms of accuracy and is required in order to perform
dynamic analyses in a reasonable time.

© CISM International Centre for Mechanical Sciences 2020
M. S. Allen et al., Substructuring in Engineering Dynamics,
CISM International Centre for Mechanical Sciences 594,
https://doi.org/10.1007/978-3-030-25532-9_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25532-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-25532-9_3


www.manaraa.com

26 3 Model Reduction Concepts and Substructuring Approaches for Linear Systems

The structural analyst should thus in principle build two models, one for the
static simulations, one for the dynamic analysis. Knowing that building a model is a
significant part of the entire study, it would be very useful to device a procedure that
reduces the size of the dynamic problem without modifying the mesh grid.

Such procedures indeed exist and are known as reduction methods. Similarly to
theway one approximates continuous fields by a set of shape functions in aRayleigh–
Ritz approach (e.g., in Finite Elements), the driving idea in reduction techniques is to
replace the DOF by a set of global variables representing the amplitudes of possible
displacement modes (see also Sect. 2.1.1):

u(t) � Tq(t), (3.1)

where u are all the DOF of the system and T is a reduction matrix of dimension
n × r , r < n and where q of dimension r × 1 is a set of reduced generalized degrees
of freedom. The columns of T define possible displacement shapes for the degrees
of freedom u, and q are the amplitude of these displacement shapes.

In general, replacing u by (3.1), only an approximate solution can be found and
the accuracy of the approximation will depend on how well the assumed modes in
T can represent the exact solution. Introducing (3.1) in the linear dynamic problem
of motion

Mü + Cu̇ + Ku = f(t), (3.2)

one obtains
MTq̈ + CTq̇ + KTq̇ = f(t) + r, (3.3)

where r is a residual force that is a remainder for the dynamic equilibrium equation:
since the reduction subspace T can in general not represent the exact solution, there
will always be an equilibrium error, whatever the choice of q. Indeed, one now has
only r unknowns q to satisfy n > r equations. Following then the idea of virtual
work, one requires that the reduced DOF q be chosen such that the residual force r
does not contribute to the dynamics in the representation space T or, in other words,
that the residual force does not produce any work for the possible shapes of motion
contained in T:

TT r = 0 (3.4)

With this condition, we can find the equations to determine q by projecting the
dynamic equilibrium equations (3.3) onto the subspace T:

TT MTq̈ + TT CTq̇ + TT KTq = TT f (3.5)

which is usually written as
M̃q̈ + C̃q̇ + K̃q = f̃ (3.6)

where the tilde superscript indicates that the matrices and vectors pertain now to a
representation in a reduced space.
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After having solved the reduced problem (3.6) for q, one can build the solution
u for the physical DOF by substituting in (3.1). The residual force r for the full
problem can be computed by substitution in the original problem (3.3): it provides a
way to monitor, a posteriori, the error on the equilibrium.

Inwhat follows, wewill drop the damping term in order to clarify the presentation.
Reductionof the dampingmatrix, in particular for substructure reduction, is discussed
in Gruber and Rixen (2018a, b) and the references therein.

3.1.2 The Guyan–Irons Method

The cornerstone of every reduction method consists of finding a representation space
T of the solution that allows finding a good approximation and that can be obtained
with a computational cost significantly smaller than the one involved in solving the
full problem. One very common way to find a reasonably good representation space
was proposed by Guyan (1965) and Irons (1965) as described next.

Let us consider the matrix equation that governs the system dynamics (3.2). To
reduce the size of matrices K and M, let us eliminate a subset of degrees of freedom.
The remaining and condensed degrees of freedom are written, respectively, as u2

and u1. Assuming that no forces are applied on u1, the equation can be partitioned
as follows:

[
M22 M21

M12 M11

] [
ü2

ü1

]
+
[

K22 K21

K12 K11

] [
u2

u1

]
=
[

f2
0

]
(3.7)

or

M22ü2 + M21ü1 + K22u2 + K21u1 = f2, (3.8)

M12ü2 + M11ü1 + K12u2 + K11u1 = 0. (3.9)

One may imagine separating the condensed coordinates u1 into two contributions

u1 = u1,stat + u1,dyn (3.10)

with the “static” part deduced from

u1,stat = −K−1
11 K12u2. (3.11)

This is obtained by neglecting the inertia forces in (3.9).
The static condensation algorithm consists in neglecting u1,dyn and in building

the reduction
[

u2

u1

]
= TG I u2 =

[
I
S

]
u2 (3.12)
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where TG I stands for the Guyan–Irons reduction matrix and where

S = −K−1
11 K12 (3.13)

is the static condensation matrix the columns of which contain the so-called static
modes representing the static response ofu1 for unitu2 displacements. They represent
the static deformation induced in the inner part of the substructure when a unit
displacement is given at an interface DOF.

The reduced matrices are then

KG I = TT KT = K22 − K21K−1
11 K12, (3.14)

MG I = TT MT = M22 − M21K−1
11 K12 − K21K−1

11 M12 + K21K−1
11 M11K−1

11 K12.

(3.15)

We observe that the reduced stiffness matrix is the stiffness matrix statically con-
densed on u2. The reduced mass matrix is the mass matrix associated to u2 and
augmented by the inertia of u1 assumed to respond statically. The dynamic problem
is then reduced to

MG I ü2 + KG I u2 = fG I
2 . (3.16)

If the static condensation algorithm is applied to static problems, the exact solution
is found. But when applied to dynamic problems, an approximation is introduced by
neglecting the dynamic response of the interior of the substructure and thereby assum-
ing that all internal nodes respond quasi-statically to the interface displacements. The
validity of the condensation algorithm thus depends on the extent to which correction
u1,dyn is negligible. It is possible to show (see, for instance, Géradin and Rixen 2015)
that the static condensation technique is valid if

ω2 � μ2
1, (3.17)

where ω is the highest eigenfrequency that one wants to compute for the complete
structure and μ1 is the lowest eigenfrequency of the structure when u2 are clamped.
The complete analysis allows to show that static condensation always leads to over-
estimating the eigenvalues compared to the full model. This is natural if we recall
that a model obtained by applying consistently a Rayleigh–Ritz approach is always
stiffer when further restrictions are introduced in the discretization field (see, for
instance, Géradin and Rixen 2015).

The algorithm described above is very frequently used in the context of finite ele-
ment structural analysis. Although originally proposed independently by Guyan and
Irons, it is commonly known as the Guyan reduction method. In commercial codes,
this method is often implemented and used to reduce the complexity of the problem
when no substructuring approach is used. The choice of an appropriate set of master
DOF u2 is sometimes done automatically by the software. One simple heuristics
consists of ranking the DOF u according to their individual pseudo-frequency com-
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puted by the ratio of the diagonals of the stiffness and mass matrices, namely for a
DOF k ν2

k = Kkk/Mkk , and choosing as master DOF u2 the ones with the lowest ν2
i .

3.1.3 Model Reduction Through Substructuring

A very interesting way of applying reduction technique is found by applying the
following procedure.

1. Define subparts of the structure called substructures. These substructures cor-
respond, for instance, to parts of the model that are analyzed and designed by
different teams. For an aircraft, this might be the wings, fuselage, stabilizers,
and tail. For a launcher system, it could be different stages of the rocket and the
payload. For a vehicle, one could define as substructures the engine block, the
accessories, the suspension and the car body. We will denote every substructure
byΩ(s). The stiffness andmassmatrices corresponding to the non-assembled sub-
structures will be denoted by K(s) and M(s), respectively. The degrees of freedom
per substructure are denoted as u(s).

2. For every subpart, define a reduction matrix T(s) that retains the degrees of free-
dom on the interface boundary, called u(s)

b , such that

u(s) = T(s)

[
u(s)

b
ζ (s)

]
(3.18)

where ζ (s) are generalized degrees of freedom representing the amplitudes of
representation modes additional to the ones governed by u(s)

b . The substructures
are now seen as macro-elements (also called super-element) which stiffness and
mass matrices are given by

K̃
(s) = T(s)T

K(s)T(s) M̃
(s) = T(s)T

M(s)T(s) (3.19)

These reducedmatrices of the substructures can easily be shared between different
design teams. Such methods are sometimes called Component Mode Synthesis or
CMS.

3. The interface boundary degrees of freedom u(s)
b are assembled on the interface of

the substructures exactly as if one would assemble the macro-elements.

If one first assumes that the entire reduction of a substructure is performed by
keeping only the interface DOF u(s)

b (i.e., no additional reduced DOF ζ (s) per sub-
structure), one can resort to the method of Guyan–Irons (see previous Section) where
the interface DOF are the master DOF (previously called u(s)

2 when the Guayn–Irons
reduction was applied to a non-decomposed problem). With a simple Guyan–Irons
reduction on the interface DOF of the substructures, the dynamics of the DOF inside
the substructures is neglected, which could be a crude assumption if the eigenfre-
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quencies of the substructures fixed on the interface are not small (see criteria (3.17)).
Hence, additional information about the substructure vibrations should be added to
the reduction basis as explained in the next Section.

3.2 Numerical Techniques for Model Reduction
of Substructures

3.2.1 The Hurty/Craig–Bampton Method

The substructure reduction method discussed in this section is one of the most com-
monly used substructuring technique in engineering practice. It was proposed byRoy
Craig (1968), writing in a more intuitive form ideas previously published by Hurty
(1965). Hence, although most commonly known as the Craig–Bampton method, we
will call it the Hurty/Craig–Bampton method.

The FE discretized system of equations of motion for a substructure reads

M(s)ü(s) + K(s)u(s) = f (s), (3.20)

where M(s) and K(s) are the mass and stiffness matrices, respectively, u(s) is the
displacement vector, f (s) is the forcing vector and the superscript s denotes the sth
substructure. The substructure equations of motion are partitioned into interior and
boundary (or interface) DOF (denoted by subscripts i and b’, respectively), as

[
M(s)

i i M(s)
ib

M(s)
bi M(s)

bb

]{
ü(s)

i

ü(s)
b

}
+
[

K(s)
i i K(s)

ib

K(s)
bi K(s)

bb

]{
u(s)

i

u(s)
b

}
=
{

0
f (s)
b ,

}
(3.21)

where the subscripts b and i are indexes referring to the boundary and internal
component of the matrices and vectors.

The representation modes, commonly called Component Modes (CMs) in sub-
structuring, are formed by computing the static response of the interior of the sub-
structure when one interface DOF is given a unit displacement and all the other DOF
are held fixed. The CM set for the entire interface is expressed as

Ψ (s) =
[−K(s)−1

i i K(s)
ib

I

]
. (3.22)

The resulting basis Ψ (s) is used to statically eliminate all interface DOF from the
model, retaining only the boundary DOF. The resulting reduced system is usually of
small size since only boundary DOF are remaining unknowns. In order to capture
the dynamics of the system, the static modes are augmented with a set of dynamic
modes which are obtained by fixing the interface DOF and solving the following
eigenvalue problem:
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(
K(s)

i i − ω2
r M(s)

i i

)
φ

(s)
i,r = 0. (3.23)

The eigenvectors obtained from this equation are referred to as fixed-interfacemodes.
A truncated set ofm of these mass normalized eigenvectors are collected into a fixed-
interface mode matrix

Φ(s) =
[
φ

(s)
i,1, . . . ,φ

(s)
i,m

0

]
=
[
Φ

(s)
i
0

]
. (3.24)

These modes provide a normal basis for the interior DOF of the substructure. The
fixed-interfacemodes and theCMsare combined to form theHCBreductionmatrix as

T(s)HCB = [Φ(s) Ψ (s)
]
, (3.25)

which provides a transformation from the substructure physical DOF to the HCB
generalized DOF, [

u(s)
i

u(s)
b

]
≈ THCB(s)

[
q(s)

i

u(s)
b

]
, (3.26)

where q(s)
i represents the modal coordinate vector associated with the fixed-interface

modes. The meaning of the static modes and of the fixed-interface modes as used in
the HCB method is illustrated in Fig. 3.1.

The uncoupled substructure-reduced mass and stiffness matrices are now formed
by applying the HCB transformation to these matrices as

M(s)HCB = (T(s)HCB
)T

M(s)T(s)HCB, K(s)HCB = (T(s)HCB
)T

K(s)T(s)HCB. (3.27)

which, using (3.25), are given by

K(s)HC B =
[

Ω (s)2
m 0

0 K̃
(s)
bb

]
and M(s)H BC =

[
I M̃

(s)
ib

M̃
(s)
bi M̃

(s)
bb

]
(3.28)

Fig. 3.1 Static modes and internal vibration modes of a substructure. In this example, the interface
is the far left edge of the plate; the constraint modes show motion of a single node on the interface
while the fixed-interfacemodes show themotion of the rest of the structurewhen the interface is fixed
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with Ω (s)2
m the diagonal matrix of the eigenfrequencies of the fixed- interface modes

and with the full submatrices

K̃
(s)
bb = K(s)

bb − K(s)
bi K(s)−1

bb K(s)
bi (3.29)

M̃
(s)
bb = M(s)

bb − M(s)
bi K(s)−1

i i K(s)
ib − K(s)

bi K(s)−1

i i M(s)
ib

+ K(s)
bi K(s)−1

i i M(s)
i i K(s)−1

i i K(s)
ib (3.30)

M̃ib = Φ(s)T
(

M(s)
ib − M(s)

i i K(s)−1

i i K(s)
ib

)
= M̃

T
bi (3.31)

The HCB reduced-order models are typically coupled using a primal assembly by
defining a transformation between the uncoupled and coupled DOF that selects the
substructure boundary DOF from a unique global set of boundary DOF (for an
explanation of the Boolean assembly matrix, see Sect. 2.2). The assembled HCB
mass and stiffness matrices are formed by adding the coupled contribution from
each substructure as

MHCB =
n∑

j=1

(
L(s)HCB

)T
M(s)HCBL(s)HCB (3.32)

KHCB =
n∑

j=1

(
L(s)HCB

)T
K(s)HCBL(s)HCB, (3.33)

where the sth substructure coupling matrix, L(s)HCB, is formed by extracting the
corresponding rows of LHCB.

� Example: W-bracket

1Interface Γ

2Interface Γ

3Interface Γ1

23

4
5

Fig. 3.2 Exploded view of theW-Bracket system, inspired by the model in Hong et al. (2013),
consisting of five plate substructures arranged in a “W” configuration with three interface sets;
the interface sets �i , i = 1, 2, 3 are highlighted and labeled

For example, consider the W-bracket system from Krattiger et al. (2019)
and shown in Fig. 3.2. This consists of five plates assembled into a shape that
resembles the letter “W”. For this example, the couplingmatrix can bewritten as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi,1

u�1,1

u�2,1

qi,2

u�2,2

u�3,2

qi,3

u�1,3

qi,4

u�2,4

qi,5

u�3,5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 I 0 0 0 0 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I
0 0 I 0 0 0 0 0
0 0 0 0 0 I 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 0 I 0
0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
LHCB

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi,1

qi,2

qi,3

qi,4

qi,5

u�1

u�2

u�3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.34)

where the boundary DOF of each substructure are further partitioned according
to the interface sets �1, �2, and �3 as shown in Fig. 3.2.

�

The choice of the number of fixed-interface modes kept in the reduction basis for
each substructure can be made based on different criteria:

• A criterion often used in practice is based on the eigenfrequencies of the kept
modes. Typically, one chooses all fixed-interface modes having an eigenfrequency
lower than 1.8 or 2 times the highest frequency of interest in the assembly.

• One can also choose the fixed-interface modes based on how easily they can be
excited through the support, for instance, by defining a measure of the interface
reaction force associate to a mode. Following a similar reasoning, one evaluates
how complete the base of the fixed- interface modes need to be by specifying how
much of the mass of a substructure mass be represented in its reduced matrices.
This can be evaluated using the concept of effective modal mass (see, for instance,
Géradin and Rixen 2015).

• The number of modes can also be chosen based on a posteriori error estimators
(Jakobsson et al. 2011), later reformulated in a less mathematical form and used
for adaptive selection strategies in Voormeeren et al. (2013).

3.2.2 Substructure Reduction Using Free Interface Modes

The discussion in this Section is based on the overview in Gruber and Rixen (2016).
Considering the equation of motion (2.2) of substructure s,

M(s)ü(s) + C(s)u̇(s) + K(s)u(s) = f (s) + g(s) (3.35)



www.manaraa.com

34 3 Model Reduction Concepts and Substructuring Approaches for Linear Systems

every substructure can be seen as being excited by the interface connection forces and
the external forces (contrary to the paradigm underlying the HCM method, where
the substructures are considered as being excited by interface displacements).

This indicates that the displacements of each substructure u(s) can be expressed
in terms of local static solutions u(s)

stat and in terms of eigenmodes associated to the
entire substructure matrices K(s) and M(s) (hence the free interface modes):

u(s) = u(s)
stat +

n(s)−r (s)∑
j=1

θ
(s)
j η

(s)
j , (3.36)

where n(s) and r (s) are the number of DOF and of rigid-body modes for substructure
s, and where the free interface modes are solutions of the eigenvalue problem

(
K(s) − ω

(s)2

j M(s)
)

θ
(s)
j = 0. (3.37)

The static solution is written as follows (assuming no external forces are applied for
simplicity):

u(s)
stat = −K(s)+g(s) +

r (s)∑
j=1

r(s)
j α

(s)
j (3.38)

The static solution arises from solving Eq. (3.35) under the assumption that there are
no inertia forces and no external forces acting on the substructure. The notationK(s)+

denotes the inverse of K(s) when there are enough boundary conditions to prevent
the substructure with a free interface from floating Rixen (2004). If a substructure is
floating, K(s)+ is the generalized inverse of K(s) and r(s)

j are the rigid-body modes
of s (see, for instance, Géradin and Rixen 2015 on how to compute a generalized
inverse and the rigid-body modes).

If only a limited number of free interface modes are used for the substructure
dynamics, Eqs. (3.36), (3.38) results in the approximation

u(s) ≈ −K(s)+B(s)T
λ + R(s)α(s) + Θ (s)η(s) (3.39)

The vectorα(s) contains the amplitudes of the rigid-bodymodes and the vector η(s)

contains the amplitudes of the retained n(s)
θ local free interface modes eigenmodes.

ThematricesR(s) andΘ (s) contain all rigid-bodymodes and the retained eigenmodes.
Since a part of the subspace spanned by Θ (s) is already included in K(s)+, the

residual flexibility matrix G(s)
r can be used instead of K(s)+, which is defined by

G(s)
r =

n(s)−r (s)∑
j=n(s)

θ +1

θ
(s)
j θ

(s)T

j

ω
(s)2

j

(3.40)
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= K(s)+ −
n(s)

θ∑
j=1

θ
(s)
j θ

(s)T

j

ω
(s)2

j

.

Note that, by construction, G(s)
r = G(s)T

r , which is computed using the second equal-
ity in Eq. (3.40). For further properties of G(s)

r , see Rixen (2004). As a result, the
approximation of one substructure writes

u(s) ≈ [R(s) Θ (s) G(s)
r A(s)T ]

︸ ︷︷ ︸
T(s)
1

⎡
⎣α(s)

η(s)

g(s)
b

⎤
⎦ . (3.41)

G(s)
r A(s)T

is the matrix containing the residual flexibility attachment modes of sub-
structure s, since the Boolean localization matrix A(s)T

simply picks the columns of
G(s)

r associated to the boundary DOF. In other words,

A(s)T
g(s)

b =
[

0
g(s)

b

]
= g(s) = B(s)T

λ.

The approximation (3.41) can now be used to reduce the substructure DOF. Using
the orthogonality properties of the modes in Eq. (3.41), the equation of motion of
one substructure becomes

M(s)
f ree

⎡
⎣α̈(s)

η̈(s)

g̈(s)
b

⎤
⎦+ K(s)

f ree

⎡
⎣α(s)

η(s)

g(s)
b

⎤
⎦ = T(s)T

1

(
f (s) + g(s)

)
(3.42)

with the matrices

K(s)
f ree = T(s)T

1 K(s)T(s)
1 =

⎡
⎣0 0 0

0 Ω (s)2 0
0 0 G(s)

r,bb

⎤
⎦ (3.43)

where

G(s)
r,bb = A(s)G(s)

r A(s)T
(3.44)

and

M(s)
f ree = T(s)T

1 M(s)T(s)
1 =

⎡
⎣I 0 0

0 I 0
0 0 M(s)

r,bb

⎤
⎦ (3.45)
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where

M(s)
r,bb = A(s)G(s)

r M(s)G(s)
r A(s)T

. (3.46)

G(s)
r,bb is the residual flexibility andM(s)

r,bb is the interface inertia associated to the resid-
ual flexibility related to the boundary DOF, respectively, and Ω (s) being a diagonal
matrix containing the retained n(s)

θ eigenvalues ω
(s)
j .

Rubin Method (RM)

The Rubin method was proposed by Rubin (1975) and, with the definitions above,
can be explained as follows. In order to assemble in a primal manner the substructure
equation of motion (3.42) in the global system, a second transformation is applied by
the RM. The force DOF g(s)

b are transformed back to the boundary displacements u(s)
b

using Eq. (3.41) (see for instance Voormeeren et al. 2011):

u(s)
b = A(s)u(s) = R(s)

b α(s) + Θ
(s)
b η(s) + G(s)

r,bbg(s)
b (3.47)

R(s)
b and Θ

(s)
b are the subparts of R(s) and Θ (s) related to the boundary DOF, respec-

tively. From this equation, the interface force DOF can be solved as

g(s)
b = K(s)

r,bb

(
u(s)

b − R(s)
b α(s) − Θ

(s)
b η(s)

)
(3.48)

with K(s)
r,bb = G(s)−1

r,bb . The transformation matrix T(s)
2 from force DOF g(s)

b back to the

boundary displacements u(s)
b leaving α(s) and η(s) unchanged writes then

T(s)
2 =

⎡
⎣ I 0 0

0 I 0
−K(s)

r,bbR(s)
b −K(s)

r,bbΘ
(s)
b K(s)

r,bb.

⎤
⎦ (3.49)

The RM approximation for one substructure writes, therefore,

u(s) = T(s)
R

⎡
⎣α(s)

η(s)

u(s)
b

⎤
⎦ where T(s)

R = T(s)
1 T(s)

2 . (3.50)

Application of this transformation to the matrices of Eqs. (3.45) and (3.43) gives
the RM-reduced matrices of one substructure:

K(s)
red,R = T(s)T

2 K(s)
f reeT(s)

2 = T(s)T

R K(s)T(s)
R , (3.51)

M(s)
red,R = T(s)T

2 M(s)
f reeT(s)

2 = T(s)T

R M(s)T(s)
R . (3.52)
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These matrices can be directly assembled using primal assembly to get the RM-
reduced matrices Kred,R and Mred,R of the global system. The RM applies the reduc-
tion matrix T(s)

R consistently to the mass and stiffness matrix resulting in a true
Rayleigh–Ritz method as was observed in Craig and Chang (1977).

MacNeal Method (MNM)

The MNMMacNeal (1971) is nearly identical to the RM except for a small change.

First, we will derive the preliminary MNM-reduced matrices K̃
(s)
red,M N and M̃

(s)
red,M N

following the derivation of the RM to show the similarities between these two meth-
ods. The reduced stiffness matrix of both the RM and the MNM are identical (given
in Eq. (3.51))

K̃
(s)
red,M N = K(s)

red,R (3.53)

but the MNM-reduced mass matrix M̃
(s)
red,M N is obtained differently. The residual

mass termM(s)
r,bb of thematrixM(s)

f ree in Eq. (3.45) is neglected, resulting in amodified
matrix labeled

M(s)
f ree,M N =

⎡
⎣I 0 0

0 I 0
0 0 0

⎤
⎦ (3.54)

instead of M(s)
f ree for the MNM Voormeeren et al. (2011). The MNM-reduced mass

matrix writes now

M̃
(s)
red,M N = T(s)T

2 M(s)
f ree,M N T(s)

2 = M(s)
f ree,M N . (3.55)

This gives in fact inconsistent equations of motion since the mass and stiffness
matrices are not reduced with the same basis. The assembly of the MNM-reduced

matrices K̃
(s)
red,M N and M̃

(s)
red,M N in the global system proceeds in the same manner

as for the RM. Observing that the boundary DOF ub have no associated inertia
in Eq. (3.55), those DOF can be condensed out of the equation of motion of the
assembled problem and the final MNM-reduced matrices Kred,M N and Mred,M N are
obtained (MacNeal 1971). Thus, the size of the assembled MNM system is reduced
further by the number of DOF of ub.

Dual Craig–Bampton Method (DCBM)

The reduction transformation (3.41) can also be used directly, without transforming
A(s)T

g(s)
b = B(s)T

λ in interface DOF (as done for the RM or for the MNM) if one
considered the dually assembled problem (see Sect. 2.3.2). In the physical domain,
the dual assembly writes
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⎡
⎢⎢⎢⎢⎣

. . . 0
...

0 M(s) 0
. . .

...

· · · 0 · · · 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

...

ü(s)

...

λ̈

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

. . . 0
...

0 K(s) B(s)T

. . .
...

· · · B(s) · · · 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

...

u(s)

...

λ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

...

f (s)

...

0.

⎤
⎥⎥⎥⎥⎦
(3.56)

Assembling all substructures N in a dual fashion by keeping the interface forces λ

as unknowns, the entire structure can consequently be approximated by

[
u
λ

]
≈ TDC B

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α(1)

η(1)

...

α(N )

η(N )

λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.57)

with the DCBM reduction matrix TDC B :

TDC B =

⎡
⎢⎢⎢⎣

R(1) Θ (1) 0 0 −G(1)
r B(1)T

. . .
. . .

...

0 0 R(N ) Θ (N ) −G(N )
r B(N )T

0 0 0 0 I

⎤
⎥⎥⎥⎦ . (3.58)

The approximation of the dynamic equations of the dual assembled system (3.56) is

Mred,DC B

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α̈(1)

η̈(1)

...

α̈(N )

η̈(N )

λ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ Kred,DC B

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α(1)

η(1)

...

α(N )

η(N )

λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= TT
DC Bf (3.59)

with the DCBM reduced mass and stiffness matrix

Mred,DC B = TT
DC B

[
M 0
0 0

]
TDC B =

[
I 0
0 Mr

]
(3.60)

Kred,DC B = TT
DC B

[
K BT

B 0

]
TDC B (3.61)

with

Mr =
N∑

s=1

B(s)G(s)
r M(s)G(s)

r B(s)T
. (3.62)
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Mred,DC B and Kred,DC B are diagonal for the parts related to the different substruc-
tures. The coupling between the substructures is only achieved by the rows and
columns related to λ. The DCBM applies the reduction matrix TDC B consistently to
the mass and stiffness matrix resulting in a true Rayleigh–Ritz method.

The DCBM enforces only a weak compatibility between the substructures and
does not enforce a strong displacement compatibility between the interfaces com-
pared to many other common reduction methods (Rixen 2004). Considering the
system of Eqs. (3.56) and (3.35) multiplied by the reduction matrix TT

DC B , the last
row of Eq. (3.59) results from

⎡
⎢⎢⎢⎢⎢⎣

M(1)ü(1) + K(1)u(1) + B(1)T
λ = f (1)

...

M(N )ü(N ) + K(N )u(N ) + B(N )T
λ = f (N )

N∑
s=1

B(s)u(s) = 0

⎤
⎥⎥⎥⎥⎥⎦

(3.63)

multiplied from left by the last row of TT
DC B which is

[−B(1)G(1)
r · · · −B(N )G(N )

r I
]
. (3.64)

Replacing the strong interface compatibility condition of Eq. (3.56) by the weak
form according to the multiplication of Eq. (3.63) by Eq. (3.64) can be interpreted as
follows. Denote Δf (s) the residual forces of substructure s resulting from the weak
satisfaction of the local equilibrium of the substructure approximating the dynamics
by a small number of free interface normal modes. Name Δu(s) = G(s)

r Δf (s) the
displacements these residual forceΔf (s) would create locally. Then theweak interface
compatibility condition Eqs. (3.63) and (3.64) states that a compatibility error (i.e., an
interface displacement jump) equal to the incompatibility ofΔu(s) is permitted Rixen
(2004).

Compared to MacNeal’s and Rubin’s method (1971, 1975), the weak interface
compatibility of the DCBM avoids locking problems occurring during the appli-
cation of the aforementioned methods. Therefore, the approximation accuracy is
improved Rixen (2004). But the fact that a weak interface compatibility is allowed
in the DCBM implies that the infinite eigenvalues related to the Lagrange multipli-
ers λ in the non-reduced problem (3.56) are now becoming finite and negative Rixen
(2011). In practice those negative eigensolutions will appear only in the higher eigen-
value spectrum if the reduction space is rich enough (Rixen 2011). Nevertheless, the
reduction basis has to be selected with care avoiding potential nonphysical effects of
the possibly occurring negative eigenvalues.

If Mr in Eq. (3.60) is neglected strong interface compatibility is enforced again
and theDCBM reduced systemwithMr = 0 is equivalent to theMNM (Rixen 2004).
Then static condensation can be applied again to remove λ (as it was done for ub at
the end of the derivation of the MNM in section“MacNeal Method (MNM)”) from
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the assembled system since no mass is associated. Thus, the size of the assembled
system is reduced again by the number of DOF of λ.

3.2.3 Numerical Examples of Different Substructure
Reduction Techniques

The Benfield truss (Benfield and Hruda 1971) of Fig. 3.3 is used to compare the
results obtainable by the HCB, the MNM, the RM, and the DCBM. The planar truss
consists of two substructures having uniform bay section whereas all members have
constant area and uniform stiffness and mass properties. The left component consists
of five equal bays and has a total of 18 joints and the right component consists of
four equal bays and has a total of 15 joints (Benfield and Hruda 1971). The lowest
eigenfrequencies ω of the entire structure shall be approximated by the different
methods.

The relative error εrel, j = |ωred, j − ω f ull, j |/ω f ull, j of the j th eigenfrequency is
used as a criterion to assess the accuracy of the different methods. Thereby, ω f ull, j

is the j th eigenfrequency of the full (non-reduced) system and ωred, j represents the
j th eigenfrequency of the reduced system obtained by each method.

Using 5 elastic (fixed or free interface normal modes) per substructure the relative
errors εrel depicted in the semi-log graph in Fig. 3.4 are resulting. Since all methods
give the correct rigid-body modes only the relative errors of the elastic modes are
plotted. All methods give a relative error of less than 1% for the first six eigenfre-
quencies. Comparing the free interface methods for this example, the RM performs
always better than the DCB and the DCB performs again always better as the MNM.
The HCB and the DCB result in similar frequency errors.

The sparsity pattern of the reduced stiffness matrix Kred and reduced mass
matrix Mred of the HCB (Fig. 3.5), the MNM (Fig. 3.7), the RM (Fig. 3.8) and
the DCB (Fig. 3.6), respectively, illustrate the differences of the assembled reduced
structures. Both the reduced stiffness matrix Kred and the reduced mass Mred matrix
applying the HCB and the DCB, respectively, have only diagonal entries for the sub-
parts of each substructure. On the one hand, the coupling between the substructures
using the HCB is entirely achieved by the last rows and last columns in the mass
matrix Mred,C B (Fig. 3.5b) and the remaining part is diagonal (Bampton and Craig
1968). On the other hand, the coupling applying the DCB is entirely achieved by the

Fig. 3.3 Benfield truss (Benfield and Hruda 1971)
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Fig. 3.4 Relative error εrel, j
of eigenfrequency j using
5 normal modes per
substructure for the
approximation of the lowest
eigenfrequencies of the
Benfield truss

Fig. 3.5 Sparsity pattern of
the reduced matrices
applying the HCB using
5 normal modes per
substructure

last rows and last columns in the stiffness matrix Kred,DC B (Fig. 3.6a) and again the
remaining part is diagonal (Rixen 2004). The corresponding degrees of freedoms are
either the interface displacements ub or the interface forces λ but no direct coupling
between the modal parameters of adjacent substructures occurs which ensures the
sparse structure.

In contrast, the sparsity pattern of stiffness matrix Kred and the reduced mass
matrix Mred obtained by the MNM and the RM, respectively, show full matrices.
The MNM gives indeed an entirely diagonal reduced mass matrix Mred,M N (Fig.
3.7b) but causes always a full coupling between all DOF of all substructures via the
reduced stiffness matrix Kred,M N (Fig. 3.7a). This makes the reusability of reduced
models obtained by the MNM very inefficient and therefore nearly impossible from
a practical point of view.

The RM also causes a coupling between the substructures via interface displace-
ments ub in the reduced stiffness matrix Kred,R (Fig. 3.8a) as well as in the reduced
mass Mred,R (Fig. 3.8b). Moreover, all DOF belonging to one reduced substructure
are coupled with all other DOF of the same substructure which is why the reduced
matrices of the RM are full for the substructure blocks and not diagonal.
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Fig. 3.6 Sparsity pattern of
the reduced matrices
applying the DCB using
5 normal modes per
substructure

Fig. 3.7 Sparsity pattern of
the reduced matrices
applying the MNM using
5 normal modes per
substructure

Fig. 3.8 Sparsity pattern of
the reduced matrices
applying the RM using
5 normal modes per
substructure

This result concerning the sparsity of the reducedmatrices is outlined in Table3.1,
which shows thenumbern of nonzero elements in the reducedmatricesKred andMred

and the sum ntotal of both obtained by the different methods for this example. The
reduced matrices of the HCB, the MNM, and the DCB contain a similar number
of entries while the RM causes even for such a simple example a remarkable high
number of entries. The number of entries of theMNMare comparable to theHCBand
the DCB but will increase dramatically if the number of substructures is increased
since Kred will always be completely full.



www.manaraa.com

3.2 Numerical Techniques for Model Reduction of Substructures 43

Table 3.1 Number n of nonzero elements in the reducedmatrices obtained by the different methods
for the Benfield truss using 5 normal modes per substructure

HCB MNM RM DCB

n in Kred 40 216 314 196

n in Mred 118 16 354 50

ntotal 158 232 668 246

3.2.4 Other Reduction Techniques for Substructures

In the previous sections, we have outlined the classical substructure reduction meth-
ods (or Component Mode Synthesis) using either free or fixed interface modes.

Other methods, are not outlined here, like for instance the Craig–Chang approach
which uses also free interface modes, but computes the interface forces from a global
(assembled) problem (Craig and Chang 1977).

Many other variants of CMSmethods were published over the past years and they
can be classified as follows:

• Loaded Interface Modes Some authors have proposed to compute the quasi-static
modes around a central frequency (Shyu et al. 1997) or to use vibration modes
with an impedance attached to the interface. In certain cases, such modifications
can improve the accuracy of the reduced model.

• Modal Truncation Augmentation and Moment Matching The vibration modes
used, for instance, in the HCB or in the RM approaches are not specifically tuned
for the excitations coming through the interface, whereas the static modes are. It is
possible to enrich the static modes with higher order static contribution computed
over a Krylov series. This leads to a method original called Modal Truncation
Augmentation (orMTA) (Dickens andStroeve 2000) andwas generalized to higher
orders corrections in the HCB in Rixen (2002). Later, techniques called Moment
Matching (Su and Craig 1991), that basically used the same ideas as MTAs, were
applied for model reduction mainly in the control community (see, for instance,
(Antoulas 2005, Holzwarth and Eberhard 2015, Stoev and Möhring 2010). The
idea of MTA was also applied for the DCBM (Rixen 2009, Kim et al. 2017).

• Balanced Truncation In the control community, reduction is seen from the point
of view of controllability and observability. This leads to representation modes
derived fromso-calledGrammians thatwere used for reducing substructuremodels
in Holzwarth and Eberhard (2015), Stoev andMöhring (2010). Balancing of State-
Space models will be discussed in Sect. 3.4.4.

• Mixed Methods Several methods were published where different types of vectors
(attachment modes, static modes ... ) were combined. One of the most commonly
used in major Finite Element software (although not cited much in the community,
maybe because the explanations in the publication are poor) is the one fromHerting
(Herting 1985). Note also that it is possible to mix primal and dual assembly



www.manaraa.com

44 3 Model Reduction Concepts and Substructuring Approaches for Linear Systems

for different DOF on an interface (which can be advantageous depending on the
stiffness ratios across the interface) (Voormeeren et al. 2011).

• Finally, let us mention that methods have been proposed where the reduction is
performed in an iterative manner, computing the residual force on the full model
after a reduction (see (3.3)) and enriching the reduction base with, for instance,
the static response of the substructures to that residual force (Balmès 1997, Bathe
and Dong 2014).

3.3 Interface Reduction with the Hurty/Craig–Bampton
Method: Characteristic Constraint Modes

While the number of degrees of freedom in a model may be reduced dramatically
using the Hurty/Craig–Bampton (HCB) method, that method retains all of the DOF
at the interfaces between substructures, and so the resulting model may still be
unacceptably large. Furthermore, since the minimum timestep for time integration is
limited by the distance between the two closest nodes, the HCB model may still be
almost as expensive to integrate as the original model. Several methods have been
proposed over the years to address this problem, and while none has been widely
implemented as has the HCBmethod, they do seem to be effective inmany scenarios.
This section presents a brief review of methods for interface reduction. For further
details and a comparison of each method on the W-bracket, see the recent review in
Krattiger et al. (2019).

Craig and Chang (1977) seem to have been the first to propose methods to reduce
the interface DOF, presenting three methods in 1977. However, they do not appear
to have been used subsequently until Castanier et al. (2001) rediscovered the modal
method by applying a secondary eigenvalue analysis on the interface partition of the
assembled CMS model and obtaining what they called the Characteristic Constraint
(CC)modes. The assembled, system-level HCBmatrices were used to compute these
modes, so this method is referred to as the System-level Characteristic Constraint
(S-CC) mode method. While the method is effective, it is often undesirable to have
to assemble the system before reduction and so this has inspired the investigation of
other methods that perform the reduction before assembly.

Hong et al. (2013) subsequently proposed an interface reduction technique that
performs an eigenvalue analysis on the HCB interface DOF prior to assembly. They
then concatenate the shapes obtained for each interface and enforce compatibility
between the local-level characteristic constraint (L-CC) modes obtained from each
interface. This method is referred to in Krattiger et al. (2019) as the “exact compati-
bility L-CC method,” because it is possible to enforce exact compatibility using that
method. However, in practice, some of the shapes are typically truncated and there
is some level of approximation.

Alternatively, Kuether et al. (2017) proposed a method that weakens the com-
patibility at the interface. The L-CC modes of each substructure remain separate
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but are combined to minimize the compatibility error between connecting substruc-
ture interfaces. Aoyama et al. (2001) presented a method similar to S-CC except
that each interface is assembled and then reduced separately. The recently presented
Hybrid-level Characteristic Constraint (H-CC) mode method blends these concepts,
performing an S-CC type analysis on each pair of interfaces. In a related work,
Balmès (1996) explored a CMS basis that defined arbitrary interface deformations
to describe a set of generalized DOF along an interface. A few other less commonly
known methods are reviewed in (Krattiger et al. (2019)).

The following reviews three different interface reduction strategies: the S-CC
method (Castanier et al. 2001), the Exact-Compatibility (EC) (Hong et al. 2013), the
Weak-Compatibility (WC) method (Kuether et al. 2017) and the Virtual Node (VN)
method. Additional methods are reviewed in Krattiger et al. (2019). The phrase
“system-level” indicates that interface reduction is applied to the fully assembled
HCBmodel, whereas “local-level” indicates that interface reduction is performed on
the individual substructures before they are assembled.

3.3.1 System-Level Characteristic Constraint (S-CC) Modes

As done by Craig and Chang (1977), and detailed by Castanier et al. (2001), the
HCB models for all subcomponents are first assembled, the interface partition of the
assembled system is extracted and then an eigenvalue analysis is performed

(
KHCB

bb − ω2
r MHCB

bb

)
φS-CC

r = 0. (3.65)

The eigenvectors obtained are called S-CCmodes and the first n vectors are collected
into a matrix,

ΦS-CC = [φS-CC
1 , . . . ,φS-CC

n

]
. (3.66)

The matrix ΦS-CC is used to replace the interface DOF of the HCB model into
amplitudes of the S-CC modes,

ub ≈ ΦS-CCqb. (3.67)

The S-CC reduced mass (and similarly stiffness) matrices are obtained by pre-
and post- multiplying the assembled HCB matrices in Eq. (3.33) with the S-CC
transformation matrix to obtain

MS-CC =
[

I 0
0 ΦS-CC

]T [MHCB
i i MHCB

ib

MHCB
bi MHCB

bb

][
I 0

0 ΦS-CC

]

︸ ︷︷ ︸
TS-CC

. (3.68)
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This reduces the size of the interface partition of the HCBmodel from the number
of physical DOF on the interface to the number of S-CC modes in the truncated
eigenvector set, nΦb . It is interesting to note that static reductionmodeswere proposed
for the interface of a dual Craig–Bampton model in Rixen (2011).

3.3.2 Local-Level Characteristic Constraint Modes

As mentioned previously, the prior method requires that the complete HCBmodel of
each component be assembled prior to reduction. This may not provide the desired
computational gains in many applications, and it requires knowledge of what the
component will connect to in order to perform the reduction. An alternative is the
local-level interface reduction techniques, where the interface is reduced before the
subsystems are assembled.

Exact Compatibility (Hong et al. 2013)

The EC L-CC interface reduction was first proposed by Hong et al. (2013) and is
uses a similar eigenvalue analysis on the interface partition, only this is performed
on each individual substructure prior to assembly. For the j th subcomponent, the
following eigenvalue problem is solved:

(
KHCB

bb, j − ω2
r MHCB

bb, j

) {
φL-CC

j

}
r

= 0 (3.69)

The L-CC modes are denoted ΦL-CC
j for the j th substructure. The L-CC modes for

each substructure are then used to reduce the interface DOF of that substructure.
Once again the W-bracket system in Fig. 3.2 can be used to illustrate the process.

The L-CC modes in ΦL-CC
1 from Eq. (3.69) have interface DOF for boundary sets 
1

and 
2, while the modes in ΦL-CC
2 have interface DOF for boundary sets 
2 and 
3.

Substructures 3, 4, and 5 only have one interface 
1, 
2, and 
3, respectively. The
L-CC modes for each subcomponent (1 through 5) are expressed then as

ΦL-CC
1 =

[
ΦL-CC

�1,1
ΦL-CC

�2,1

]
, ΦL-CC

2 =
[
ΦL-CC

�2,2
ΦL-CC

�3,2

]
,

ΦL-CC
3 = ΦL-CC

�1,3 , ΦL-CC
4 = ΦL-CC

�2,4 , ΦL-CC
5 = ΦL-CC

�3,5 .

(3.70)

Following what was done in Krattiger et al. (2019), for each substructure the
interface modes are computed for the entire interface set simultaneously, even if the
set of interface nodes comprises multiple distinct interfaces. Then, for each distinct
interface, the modes from every substructure are concatenated to create a complete
basis for each interface. The result is called the augmented set, e.g., Φ

aug

1

. For the
W-bracket system in Fig. 3.2, we have the following augmented sets:
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Φ
aug

1

= [ΦL-CC
�1,1 ΦL-CC

�1,3

]
, Φ

aug

2

= [ΦL-CC
�2,1 ΦL-CC

�2,2 ΦL-CC
�2,4

]
,

Φ
aug

3

= [ΦL-CC
�3,2 ΦL-CC

�3,5

]
.

(3.71)

The augmented interface L-CCmodes for each interfacewill generally not be linearly
independent and this must be corrected before they can be used. Indeed, the matrices
may be rank deficient to numerical precision such that they cannot be used as a basis.
To address this, Hong et al. used a Singular Value Decomposition (SVD) on the
augmented L-CC modes,

Uaug
� j

Saug
� j

(
Vaug

� j

)T = Φ
aug
� j

, (3.72)

where Uaug
� j

and Saug
� j

are the left singular vectors and the diagonal singular value
matrix for the j th interface set. If some singular values are very small then the basis
is ill-conditioned and the corresponding singular vectorsmust be truncated. InHong’s
work (Hong et al. 2013), the truncation tolerance usedwas σR = 1 × 10−4 = 0.01%,
where σR is the ratio of the minimum singular value to the maximum for the retained
modes. In Krattiger et al. (2019), the effect of σR on the model performance was
evaluated, revealing that σR = 1 × 10−4 = 0.01% was optimal for the W-bracket,
but this can be expected to be problem dependent.

The resulting matrices U
 j can then be grouped for each subsystem j to form
a block-diagonal matrix that contains all the interface sets for substructure j . Take
substructures 1 and 3 as examples. The orthogonal L-CC basis is

U1 =
[

U�1 0
0 U�2

]
, U3 = U�1 . (3.73)

Then, the reduced mass and stiffness matrices for each subcomponent j are

MEC L-CC
j =

[
I 0

0 U j

]T [MHCB
i i, j MHCB

ib, j

MHCB
bi, j MHCB

bb, j

][
I 0

0 U j

]
. (3.74)

Further details are provided in Krattiger et al. (2019).

Weak Compatibility

The WC L-CC method also begins by computing local interface modes for each
substructure using Eq. (3.69). This transformation expresses the physical interface
DOF as a linear combination of the interface modes,

ub, j ≈ ΦL-CC
j qb, j . (3.75)
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Then the reduced-order mass matrix for each substructure is

MWC L-CC
j =

[
I 0

0 ΦL-CC
j

]T [MHCB
i i, j MHCB

ib, j

MHCB
bi, j MHCB

bb, j

][
I 0

0 ΦL-CC
j

]
. (3.76)

The models for each substructure are not statically complete at the interface, so
they cannot simply be assembled. Furthermore, because the basis for each interface
may not span the same space, they could lock if strict constraints are enforced.
Instead, the following approach is used. The constraint equations for the interface
are written as

Bqcat = 0 (3.77)

where qcat contains the interface modal coordinates concatenated from each uncou-
pled substructure, e.g., qcat = [u�1,1, u�1,3

]
. A transformation is sought such that,

qcat = Lbqasm , and this can be obtained if Lb lies in the null space of B. Hence, the
matrix B is formed and its null space is computed and used to define Lb.

For theW-bracket example, the following constraint equations need to be satisfied:

u�1,1 = u�1,3, u�2,1 = u�2,2, u�2,1 = u�2,4, u�3,2 = u�3,5. (3.78)

Collecting all of the constraint equations into a single matrix and expressing them in
modal coordinates gives

⎡
⎢⎢⎢⎢⎢⎢⎣

ΦL-CC
�1,1 0 −ΦL-CC

�1,3 0 0

ΦL-CC
�2,1 −ΦL-CC

�2,2 0 0 0

ΦL-CC
�2,1 0 0 −ΦL-CC

�2,4 0

0 ΦL-CC
�3,2 0 0 −ΦL-CC

�3,5

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qb,1

qb,2

qb,3

qb,4

qb,5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0. (3.79)

Then, the transformation Lb is sought that minimizes BLb. Specifically, the SVD,
B = UBSBVT

B is computed and the columns ofVB are retained if their singular values
are less than a null space tolerance, σN . The compatibility will be good (although
typically not exact) as long as the singular values are small. Those motions at the
interface that are compatible will govern the motion of the coupled system, while
those displacements that are deemed incompatible are discarded.

Once an approximate null space has been obtained, it is placed into the boundary
partitions of the overall coupling matrix. For the W-bracket model, this gives
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi,1

qb,1

qi,2

qb,2

qi,3

qb,3

qi,4

qb,4

qi,5

qb,5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 0 0 0 0 N1

0 I 0 0 0 0
0 0 0 0 0 N2

0 0 I 0 0 0
0 0 0 0 0 N3

0 0 0 I 0 0
0 0 0 0 0 N4

0 0 0 0 I 0
0 0 0 0 0 N5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
LWC L-CC

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qi,1

qi,2

qi,3

qi,4

qi,5

qb

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (3.80)

where N j denotes the rows of N corresponding to the interface DOF of the j th
substructure. Finally, the reduced-order system is assembled by summing over the
substructures.

MWC L-CC =
n∑

j=1

(
LWC L-CC

j

)T
MWC L-CC

j LWC L-CC
j , (3.81)

where LWC L-CC
j contains the rows of LWC L-CC corresponding to the j th uncoupled

substructure.

Virtual Node

Lindberg et al. (2013) presented an interface reduction method that formalizes some
concepts that have been used in industry for many years. This method was proposed
as a way to connect stiff and soft substructures at a single Virtual Node (VN) having
six DOF. In Krattiger et al. (2019), this approach was generalized to allow n virtual
nodes along an interface. Each virtual node is connected to neighboring nodes with
multi-point constraints, and so thenode set can collectivelymove in six shapes defined
by three orthogonal translations and three rotations around the VN’s position.

This type of approach is used very commonly in industry, although there are
various flavors. For example, the RBE3 elements that are commonly used in Nastran
performa similar operation, although they donot eliminate the interface nodesmerely
compute the motion of a virtual node that tracks the average motion of the interface.
The experimental counterpart, operating on measured FRFs, can be found in the
virtual point transformation, which is discussed in Sect.4.6.

Other Approaches

Coppolino proposed a complementary approach called Modified Guyan Reduction
(MGR) in which forces are applied in the shape of a certain vector, such as the
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displacement patches used in theVNapproach, thus allowing the interfaces to deform
in a natural way but reducing the number of interface DOF (Coppolino 2018).

Other extensions to the interface reduction methods proposed here are certainly
possible. One notable addition is the Hybrid method (H-CC), which is described in
detail in Krattiger et al. (2019).

3.4 State-Space Model Reduction

A state-space model representation gives a unified approach to the modeling of
finite- dimensional dynamical systems. It is often used in control theory and in
system identification theory alike but less so in classical structural dynamics theory
that rely more on second-order system descriptions. However, it also suits well in
structural dynamics and as such gives a good bridging link to the system identification
that estimates mathematical models from experimental data. The state-space system
formulation for nonlinear or linear dynamical systems provides a general first-order
differential form description that relates the system responses to known and unknown
system stimuli. In testing, the system responses are measured with sensors using a
data acquisition system that unavoidably mixes the true system response with noise.
Since the unknown stimuli and sensor noise are often best seen as being stochastic, a
so-called stochastic state-space description that embeds deterministic and stochastic
parts can be expressed by the state transition differential equation, also called the
dynamic equation together with the output equation as

x = Ax + Bs + Ew, (3.82)

r = Cx + Ds + v.

Here x ∈ R
n is the state vector, s ∈ R

ns is the vector of known stimuli and r ∈ R
nr

is the output vector. The system order is n, the number of independent stimuli ele-
ments of the excitation vector is ns , and the number of response elements of the output
vector is nr . The column vectors w ∈ R

nw and v ∈ R
nv represent unknown process

noise and output noise, respectively. The matrices A, B, C, D, and E are state-space
coefficient matrices out of which B ∈ R

n×ns is the output matrix, C ∈ R
nr ×n is the

input matrix, and D ∈ R
nr ×ns is the direct throughput matrix. In general, for a non-

linear and time-varying system, the system coefficients are state and time dependent.
However, for linear time-invariant systems the matrices are constant coefficient.

In vibration testing, the system of interest is often put on soft supports to isolate
it from ambient vibrations. The system is excited by some measured stimuli s and
its responses r are picked up as sensor signals which are filtered, digitized and
processed in a data acquisition system. In reality, the registered stimuli s is not the
true system stimuli since sensors are not ideal and the support system does not fully
isolate the test object from ambient vibrations which lead to unknown vibration
stimuli w transmitted to the system. However, in many cases, the stochastic terms
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may rightfully be deemed negligable which leads to the deterministic state-space
description

x = Ax + Bs (3.83)

r = Cx + Ds

forwhich there is an initial value time domain solution given by a convolution integral
expression, see Eq. (3.89) below.

The frequency domain counterpart for the steady-state dynamics of the determin-
istic time domain model follows from the assumption that a harmonic stimulus with
amplitude ŝ and frequency ω, i.e., s(t) = Re{ŝeiωt }, results in a harmonic response
Re{r̂eiωt }. This gives the relation between input and output as

Re{r̂eiωt } = Re{[C(iωI − A)−1B + D]ŝeiωt } (3.84)

which defines the system’s transfer function H, also known as its frequency response
function as

H(ω) = C(iωI − A)−1B + D (3.85)

A state-space model, on the form given by Eqs. (3.83) or (3.85), attempting to
mimic the behavior of a real system may be called a realization within a model
structure M of a system. For a multi-input-multi-output system, the coefficient
matrix quadruple M = {A, B, C, D} generally holds n2 + nnr + nns + nr ns ele-
ments in total. However, for a given input/output relation, there is no unique state-
space description. Unique realizations can be obtained after adding model form con-
straints. Four such realizations; the balanced realization, the modal realization, the
Jordan form realization, and the coupling realization are of particular interest here.
For the balanced realization, the observability and controllability Grammians (see
below) are forced to coincide. Themodal form is applicable for most systems and is a
realization in which its states are fully decoupled. Some systemswith esoteric behav-
ior cannot be transformed into a system with fully decoupled states. For these, the
Jordan normal form gives the realization with the minimal coupling between states.
The coupling realization is particularly useful for coupling of state-space models
for which force equilibrium and displacement compatibility need to be enforced at
subsystem interfaces.

A change of variables x = Tz with a nonsingular transformationmatrixT leads to
a proof of the nonuniqueness. Setting out fromEq. (3.83) andusing the transformation
x = Tz give

Tż = ATz + Bs, (3.86)

r = CTz + Ds.
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Since T is nonsingular this leads to

ż = T−1ATz + T−1Bs ≡ Āz + B̄s (3.87)

r = CTz + Ds ≡ C̄z + Ds,

which is a similar realization with the state-space matrix quadruple M̄ = {Ā,

B̄, C̄, D} and states z that gives the same input/output relation as the realization
{A, B, C, D} with states x. A similarity transformation, such as x = Tz, which is
known to preserve the eigenvalues of the system, thus also preserves its input/ output
relation.

Markov Parameters and the Hankel Matrix. Associated to the dynamic equa-
tion of the state-space description (3.83) is the matrix integral solution of the initial
value problem

x = Ax + Bs with x(0) = x0 (3.88)

for which the exact solution is given by the convolution

x(t) = Φ(t)x0 +
∫ t

0
Φ(t − τ)Bs(τ )dτ. (3.89)

Here Φ(t) is the state transition matrix, which is

Φ(t) = eAt = I + tA/1! + t2A2/2! + . . . (3.90)

An important special case is for the impact stimuli s(t) = [1 1 . . . 1]T δ(t) of a
system at rest with x0 = 0 and δ(t) being the Dirac delta function. For such an ideal
impact (hit), the convolution integral in (3.89) evaluates to

x(t) = [A0B + tAB/1! + t2A2B/2! + . . .][1 1 . . . 1]T (3.91)

and the system response r ≡ rhit is thus given by

rhit(t) = [Dδ(t) + CA0B + tCAB/1! + t2CA2B/2! + . . .][1 1 . . . 1]T . (3.92)

The terms of the system’s impact response series are associated to its Markov
parameters defined as

h0 = D hk = CAk−1B, k = 1, 2, . . . (3.93)

from which it can be noted that the impact response is

rhit(t) = [h0δ(t) +
∑
k=0

hk+1t k/k!][1 1 . . . 1]T (3.94)
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The infinite-size Hankel matrixH of the system is constructed from its Markov
parameters as follows:

H =

⎡
⎢⎢⎢⎢⎢⎣

h1 h2 h3 h4 . . .

h2 h3 h4 h5
...

h3 h4 h5 h6
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

CB CAB CA2B CA3B . . .

CAB CA2B CA3B CA4B
...

CA2B CA3B CA4B CA5B
...

...
...

...
...

. . . .

⎤
⎥⎥⎥⎥⎥⎦

(3.95)

Although theHankelmatrix is of infinite size, its rank is bounded to be rank(H ) ≤
n. This follows from the Cayley–Hamilton theorem stating that A raised to any
power can be expressed as a linear combination with a finite number of terms as
Ak =∑n−1

j=0 α jkAk . This, in turn, leads to that the number of linearly independent
columns (and rows, and thus the rank) of the Hankel matrix is limited. The number of
positive singular values of the Hankel matrix is thus also bounded. Its largest singular
value σ1(H ) is associated with the largest impulse response of the system.

Discrete-Time State-Space Modeling. The convolution solution (3.89) is utilized
for deriving efficient computational schemes for discrete-time solutions. Consider
the solutions at two consequent discrete times kT and kT + T , where T = 1/ fs and
fs is referred to as the sampling frequency. The solutions are

xk = eAkT x0 +
∫ kT

0
eA(kT −τ)Bs(τ )dτ (3.96)

and

xk+1 = eA(kT +T )x0 +
∫ kT

0
eA(kT +T −τ)Bs(τ )dτ (3.97)

= eAT (eAkT x0 +
∫ kT

0
eA(kT −τ)Bs(τ )dτ) +

∫ kT +T

kT
eA(kT +T −τ)Bs(τ )dτ

= eAT xk +
∫ kT +T

kT
eA(kT +T −τ)Bs(τ )dτ.

It is interesting to note that after a sample interval [kT kT + T ] in which no
excitation take place the state xk+1 can be computed without approximation using
the discrete- time transition matrix and the previous state xk for an arbitrary slow
sampling rate T .

Using so-called zero-order-hold assumption, i.e., assuming that the stimulus sk is
constant over the sampling period T , the excitation term can be approximated as

∫ kT +T

kT
eA(kT +T −τ)Bs(τ )dτ ≈ (

∫ kT +T

kT
eA(kT +T −τ)dτ)Bsk . (3.98)
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With the change of variables kT + T − τ = τ ′, the integral expression can be
evaluated into

∫ kT +T

kT
eA(kT +T −τ)dτ = −

∫ 0

T
eAτ ′

dτ ′ =
∫ T

0
eAτ ′

dτ ′ (3.99)

=
∫ T

0
(I + τ ′A + τ ′2A2/2! + . . .)dτ ′ = T I + T 2A/2! + T 3A2/3! + . . .

= A−1(T A + T 2A2/2! + T 3A3/3! + . . .) = A−1(eAT − I).

Which leads to the explicit time-stepping algorithm for the states

xk+1 = Âxk + B̂sk (3.100)

and the response

yk = Cxk + Dsk (3.101)

with the discrete-time state-space matrices

Â = eAT and B̂ = A−1(eAT − I)B. (3.102)

It can be shown that for stable systems ||Â|| < 1, which is a requirement for the
time-stepping numerical integration scheme (3.100) to be stable.

3.4.1 Structural Dynamics Equations in State Space

It is interesting to relate the state-space model structure to the second-order linear
mechanical system that is so often used in finite element (FE) structural dynamic
modeling that in this setting reads

Mü + (V + G)u̇ + (K + λKg + L)u = F(t) (3.103)

with the displacement and load vectors u, F ∈ 	N . Here M, V, G, K, Kg, L are the
mass, viscous damping, gyroscopic, stiffness, geometric stiffness, and circulatory
matrices, respectively, and N is the number of degrees of freedom of the model.
The λ is the buckling load parameter with λ = λcr giving static buckling. Let F(t)
relate to the nonzero independent stimuli s(t) with the linear relation F = Pss. Here
Ps ∈ R

N×ns is the so-called picking matrix that, however general, most often is a
Boolean matrix used in the procedure to pick out the nonzero loads of F, bringing
that to the nonzero stimuli s and by Ps redistribute the nonzeros back into F. The
mass matrix is assumed to be symmetric positive definite and therefore Eq. (3.103)
can be rewritten as
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ü + M−1(V + G)u̇ + M−1(K + λKg + L)u = M−1Pss(t) (3.104)

Combined with the trivial equation Iq̇ − Iq̇ = 0, Eq. (3.104) can be written as the
state-space dynamic equation

ẋ =
[

0 I
−M−1(V + G) −M−1(K + λKg + L)

]
x +
[

0
M−1Ps

]
s ≡ Ax + Bs

(3.105)
where the state vector x has been introduced so that

x =
(

u
u̇

)
and thus ẋ =

(
u̇
ü

)
(3.106)

The quantities of interest in mechanical analyses is often a selected set of dis-
placements, velocities, accelerations or quantities that can be derived from these,
e.g., stresses and strains. Let the quantities of interest be the outputs y of the system.
In finite element vibrational analysis, the outputs of the model are often obtained
by post-processing the analysis results. The analysis results, in this case, are the
nodal displacements u and velocities u̇ of the model. The analyst then specifies what
quantities are of his interest and lets the post-processor calculate these using analysis
results together with complementary model data. These quantities are often linearly
related to the displacements and velocities given by the analysis, and are therefore
natural ingredients of in a linear state-space model. Displacement and velocity out-
put elements may easily be extracted. This can be made by letting a picking matrix
P operate on the state vector x containing all nodal displacement and velocities of
the FE model. The time derivative of the state vector ẋ holds the acceleration data.
Let Pd be the picking matrix that picks out the displacements of interest rd from
the displacement partition of the state vector and Pv be the one that picks out the
velocities of interest rd from the velocity part. Then the output equation becomes

r ≡
(

rd

rv

)
=
[

Pd 0
0 Pv

]
x ≡
[

Cd

Cv

]
x. (3.107)

Let further Pa be the picking matrix that picks out the accelerations of interest ra

from the acceleration partition of the state vector’s time derivative ẋ. Then the output
equation for accelerations becomes

r ≡ ra = [0 Pa
]

ẋ = [0 Pa
] [Ax + Bs] ≡ Cax + Ds. (3.108)

In summary, for a combined output

r ≡
⎛
⎝rd

rv

ra

⎞
⎠ (3.109)
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the corresponding state-space model quadruple {A, B, C, D} can be identified to be

A = −
[

0 −I
M−1(V + G) M−1(K + λKg + L),

]
B =
[

0
M−1Ps,

]
(3.110)

C =
⎡
⎣Cd

Cv

Ca,

⎤
⎦ =
⎡
⎣Pd 0

0 Pv

[0 Pa]A

⎤
⎦ D =

⎡
⎣Dd

Dv

Da

⎤
⎦ =
⎡
⎣ 0

0
[0 Pa]B.

⎤
⎦

Here it may be noted that only acceleration output has static contribution through
the direct throughput termDas, i.e., direct contribution from the excitation besides the
dynamics of the system via the dynamic equation ẋ = Ax + Bs. This is consistent
with Newton’s second law that directly relates acceleration contribution to force. The
velocities and displacements, on the other hand, need to be obtained as the integral
solution to the initial value problem ẋ = Ax + Bs, x(0) = x0. The velocity output
is also related to displacement output by rv = drd/dt and therefore it is also given
that

rv = Cd [Ax + Bs] = CdAx + CdBs = CdAx (3.111)

since it can be easily verified from above that CdB = 0 and thus no direct throughput
from s occur to velocity in this formulation either.

For other output quantities which relate linearly to the above quantities, e.g.,
strains and stresses, the corresponding state-space description is straightforward.

3.4.2 State Observability and State Controllability

State observability and state controllability play important roles in experimen-
tal vibration engineering. Loosely speaking, the state observability condition tells
whether the states of the system can be uniquely determined from recorded response
r. Similarly, the state controllability tells whether the model’s states may be excited
independently from each other by the stimuli s. In vibration testing, often targeting
eigenmodes of a structure, the observability and controllability of the modes given
by the chosen sensor-actuator configuration are critical for success. In the sensor
placement, the observability criterion should, therefore, be fulfilled such that no crit-
ical states are non-observable. Likewise, state controllability of critical states should
be maintained by proper actuator placement such that these states are excited and
therefore contribute to the measured response.

State Observability. The concept of state observability is linked to the outputs
and states of the system. Given a state-space model and the set of responses r and
stimuli s, the question of observability is whether the model states x are deducible
from the set. This is more rigorously formulated in the following definition: A linear
system is said to be observable at time t0 if the state x(t0) can be uniquely determined



www.manaraa.com

3.4 State-Space Model Reduction 57

from the response r(t) when t ≥ t0. If the system is observable for all times, then the
system is said to be completely observable.

The observability of a state-space model {A, B, C, D} can be investigated pro-
vided the model and its inputs and outputs are known. When the output is given at
times t ≥ t0, also the time derivatives of the output at t may be determined. Using
that r = Cx + Ds, and therefore the sequence

ṙ = Cẋ + Dṡ = CAx + CBs + Dṡ (3.112)

r̈ = CAẋ + CBṡ + Ds̈ = CA2x + CABs + CBṡ + Ds̈
...

leads to maximum n independent equations (not more according to the Cayley–
Hamilton theorem, see below) for x. On matrix form these equations are

R = Ox + GS (3.113)

with R being the vectorial concatenation of r,ṙ, r̈, . . . and S being the vectorial
concatenation of s, ṡ, s̈, . . .. The observability matrix of the system O is

O =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦

(3.114)

and matrix G is irrelevant for observability. If the nr n-by-n observability matrix has
a rank of less then n, some linear combination of the n columns add to zero, and
therefore there are (transformed) states that do not contribute toR. It is thus necessary
for observability of all system states that the observability matrix is of full rank. Is
the full rank condition also sufficient for observability? To examine this, we start
with multiplying equation (3.113) with the transpose of O to obtain

OTR = OTOx +OTGS. (3.115)

If O is of full rank then OTO is nonsingular and thus the state vector x can be
determined as its unique solution, which is

x = (OTO)−1OT(R − GS). (3.116)

Is this also the solution to Eq. (3.113)? If it is not, for the two different solutions x1

and x2 wewould haveO(x1 − x2) = 0whichmeans that some linear combination of
the columns ofO is zero, which contradicts the assumption thatO is of full column
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rank. In conclusion, we may thus state that: A realization is uniquely observable if
and only if the observability matrix O has full rank n.

It is important to notice that observability of states or lack of observability of
states is not a given system property but can be actively affected by the selection
of sensor configuration. In the planning of a vibration test, the observability issue
can be addressed and various sensor configurations can be compared with respect
to observability. Since the selection of sensor configuration affects the C matrix,
different configurations can be evaluated for best observability in a pretest planning
phase using FE analyses if an FE model is available. It is further interesting to note
that, for high-order models, the time-continuous observability matrix Eq. (3.114)
involve large entries when n is large and ||A|| > 1. Its numerical evaluation may
then be troublesome since that may involve high powers of A. The observability
matrix of the stable discrete-time model

OT = [CT (CÂ)T (CÂ
2
)T . . . (CÂ

n−1
)T] (3.117)

with ||Â|| ≤ 1does not suffer from this problemand is thus better suited for numerical
evaluation.

State Controllability. The concept of controllability relates to the input and the
states of a system. The state-space first-order differential equation can be used to
examine the concept. The controllability is defined by the following: The system
ẋ= Ax + Bs is said to be state controllable at time t = t0 if there exists a piecewise
continuous inputs(t) that will drive the initial statex(t0) to any final statex(t f ) within
a finite time intervalt f − t0. If this is true for all initial times and all initial states,
the system is said to be completely state controllable.

If a time-invariant system is state controllable, it is thus also completely state
controllable. For such systems, a quantitative test of controllability can be derived.
To this end, let the initial time be t0 = 0, for which the solution to the state-space
equation is

x(t f ) = eAt f x(0) +
∫ t f

0
eA(t f −τ)Bs(τ )dτ, (3.118)

which, for nonsingular eAt f , can be reduced to

e−At f x(t f ) − x(0) ≡ Δx(t f ) =
∫ t f

0
e−Aτ Bs(τ )dτ. (3.119)

The Cayley–Hamilton theorem giving Ak =∑n−1
J=0 α jkAk together with the defi-

nition exp(At) = I + tA + t2A2/2! + . . . gives

e−Aτ =
n−1∑
j=0

α j (τ )A j (3.120)
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with

α j (τ ) =
∞∑

k=0

(−1)kα jkτ
k/k! (3.121)

Hence, Eqs. (3.119) through (3.121) give

Δx(t f ) =
n−1∑
j=0

AjB
∫ t f

0
α j (τ )s(τ )dτ ≡

n−1∑
j=0

AjBc j (t f ) (3.122)

with

c j (t f ) =
∫ t f

0
α j (τ )s(τ )dτ (3.123)

Equation (3.122) can then be written in matrix form as

Δx(t f ) = [B AB A2B . . . An−1B][cT
0 cT

1 . . . cT
n−1]T (3.124)

and represents a set of n equations and nnu unknowns. The matrix equation has a
solution for any Δx(t f ) provided that the n × nns matrix

C = [B AB A2B . . . An−1B] (3.125)

has n independent columns. The matrix C is known as the controllability matrix and
thus the system is completely state controllable if C has rank n.

Similar to the observability matrix of continuous-time systems, the controllability
matrix has bad numerical properties when the system order gets large and ||A|| > 1.
The observability matrix of the associated discrete-time model

C = [B̂ ÂB̂ Â
2
B̂ . . . Â

n−1
B̂] (3.126)

of the stable system is then better suited. This matrix related to discrete-time entities
is sometimes called the reachability matrix.

Controllability and Observability Grammians. Suppose a realization is given
by ẋ= Ax + Bs, x(t0) = x0 and the quest is to bring the state to zero by a finite
amount of energy input u in a fixed time t f . Is that possible? To answer that question,
the initial value solution for a given s

x(t f ) = eA(t f −t0)x(0) +
∫ t f

t0

eA(t f −τ)Bs(τ )dτ (3.127)

can be used. For a nonsingular eA(t f −t0), we thus have
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− x0 =
∫ t f

t0

eA(t f −t0)eA(t f −τ)Bs(τ )dτ =
∫ t f

t0

eA(t0−τ)Bs(τ )dτ. (3.128)

This is an integral equation for the sought stimuli s. Its solution can be shown to
be

s(τ ) = −BT eAT (t0−τ)G−1
c (t0, t f )x0, (3.129)

where

Gc(t0, t f ) =
∫ t f

t0

eA(t0−τ)BBT eAT (t0−τ)dτ (3.130)

is the controllability Grammian. To see that Eq. (3.130) really gives the solution, let
it enter into the integral of Eq. (3.128) which renders

−
∫ t f

t0

eA(t0−τ)BBT eAT (t0−τ)G−1
c (t0, t f )x0dτ = (3.131)

−[
∫ t f

t0

eA(t0−τ)BBT eAT (t0−τ)dτ ]G−1
c (t0, t f )x0 =

−Gc(t0, t f )G
−1
c (t0, t f )x0 = −x0

since Gc(t0, t f ) is constant. The process requires that the controllability Grammian
is nonsingular and therefore invertible, which is, therefore, the Grammian-related
condition for controllability.

Similarly, for the realization ẋ= Ax + Bs, r = Cx, the corresponding observ-
ability Grammian

Go(t0, t f ) =
∫ t f

t0

eAT (t0−τ)CT CeA(t0−τ)dτ (3.132)

must be nonsingular (Kailath 1980) for the realization to be observable from the
output during over times t0 ≤ t ≤ t f .

The Grammian singularity test is known to be a test for linear dependence of
functions l j and lk for which the Grammian G jk = ∫ t1

t0
l j lkdτ should be nonzero for

linear independence. In the case here, the functions for independence test are the
system’s state sequence eAt B to impulse excitation. Let the start time for control
stimuli vary, i.e., let t0 = t , and observe the following property of the controllability
matrix

d

dt
Gc(t, t f ) = d

dt

∫ t f

t
eA(t−τ)BBT eAT (t−τ)dτ = (3.133)

∫ t f

t

d

dt
[eA(t−τ)BBT eAT (t−τ)]dτ − e0BBT e0 =

AGc(t, t f ) + Gc(t, t f )AT − BBT .
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For large time ranges t f − t and damped (asymptotically stable) systems, the
state impulses eventually die out asymptotically and do not contribute more to the
Grammian. Thus, for large control times theGramian derivativewith respect to initial
time variation is zero. The infinitely long time Grammian G∞

c is thus governed by
the Lyapunov equation

AG∞
c (t, t f ) + G∞

c (t, t f )AT − BBT = 0. (3.134)

On the other hand, the corresponding long time observability GrammianG∞
o can

be shown (see Kailath 1980) to be the solution of another Lyapunov equation

ATG∞
o (t, t f ) + G∞

o (t, t f )A − CT C = 0. (3.135)

Numerical methods for solving the Lyapunov equations exist but are computa-
tionally expensive. For large order systems (say n > 10.000), the solution may take
hours to obtain even with a fast computer (as of year 2018). Recall that the Grammi-
ans obtained by the Lyapunov equation are for infinitely long control and observation
times. The general controllability Grammian, as defined by Eq. (3.130), is seen to be
dependent on control time and is thus not unique. Also, observe that the Grammians
are not invariant to similarity transformations. Therefore, a similar realization as in
Eq. (3.86) normally gives other Gramians Gc and Go. This is used to the advantage
for model reduction using the balancing realization, one important realization form
discussed below.

3.4.3 State-Space Realizations

State-Space Realization on Diagonal Form. The diagonal form, also known as
the modal decomposition form, is a particular state-space realization that is strongly
linked to the free (i.e., s(t) = 0) decaying system state from an initial state x(0) =
Φ �= 0 for which it holds that

ẋ(t) = Ax(t), r(t) = Cx(t), x(0) = Φ. (3.136)

Under the assumption that the free decay is governed by the solution x(t) = Φeλt

one has
AΦ = λΦ, r(t) = CΦeλt (3.137)

for which there are nontrivial solutions (λ,Φ) provided that λ is a root of the char-
acteristic polynomial det(A − λI) = 0. Such roots are also called system poles and
the associated solution vectors Φ are the eigenvectors of A. Assuming that A and C
stem from a physically realizable system (for which the response r to a real-valued
stimulus r is real), a real form of A ∈ R

n×n and C ∈ R
nr ×n is possible. Thus the char-

acteristic polynomial has real-valued polynomial coefficients and the poles are thus
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either real or appear in complex-conjugate pairs. The eigenvalue problem (3.137)
for all eigensolutions combined is

AT = TΛ, (3.138)

where the modal matrix T has all system eigenvectors as columns and the eigenvalue
matrix Λ has the associated system poles, normally sorted in increasing magnitude
order, as elements along its diagonal. It has been shown, see e.g., Golub and van
Loan (2012), that Λ is fully diagonal provided that all system poles are unique.
That state-space realization thus has fully decoupled states. For systems with system
poles that are not all unique, but for which some or all appear in clusters of coalescing
poles, it has been shown that a minimal-form Λ has a 2 × 2 block-diagonal form
for the associated poles and is otherwise diagonal. Such systems, with a so-called
deficient system matrix A, are treated in the next section that treats the Jordan normal
form while this section is devoted to systems that can be brought to a fully diagonal
form for which the system matrix A is non-deficient. That includes systems that has
repeated eigenvalues but for which A is still non-deficient.

Using that T−1AT = T−1TΛ = Λ together with the state transformation x = Tz,
the realization (3.87) becomes

ż = Λz + T−1Bs ≡ Λz + B̄s (3.139)

r = CTz + Ds ≡ C̄z + Ds

and since Λ is diagonal the first-order differential equation system thus becomes
fully decoupled. In free vibration in one mode only, i.e., zk(t) �= 0, zm = 0 ∀m �= k,
one notes that the response is

r(t) = C̄.k zk(t) (3.140)

and the k:th column of C̄ (denoted C̄.k) is thus the k:th eigenvector of A as seen by
the sensors through the projection of C.

Since the eigenvaluesmay either be realwith real-valued eigenvectors, or appear in
complex-conjugate pairs with associated complex-conjugate eigenvectors, a block-
diagonal real form of the generally complex-valued realization {Λ, B̄, C̄, D} is pos-
sible. For each complex-conjugate pair of eigenvalues λk = Re{λk} ± Im{λk}, the
corresponding 2 × 2 block of the system matrix becomes

[
Re{λk} −Im{λk}
Im{λk} Re{λk}

]
(3.141)

and the associated two columns of T become Re{Φ} and Im{Φ}.
For the modal form realization (3.139) the frequency domain transfer function,

see Eq. (3.85), can be expressed as

H(ω) = C̄(iωI − Λ)−1B̄ + D (3.142)
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Since the state matrix Λ is diagonal, with the kth eigenvalue λi on its kth row and
column, one notes in particular that a transfer function element Hi j can be expressed
as

Hi j (ω) = C̄i.diag(
1

iω − λk
)B̄. j + Di j (3.143)

or using the so-called pole-residue form as

Hi j (ω) =
n∑

k=1

C̄ik B̄k j

iω − λk
+ Di j , (3.144)

where C̄ik B̄k j are the n residues of the transfer function Hi j . Since the eigenvectors
of A are generally complex-valued, the residue may be a complex-valued scalar.

� A two-degree-of-freedom example

Fig. 3.9 A two-degree-of-freedom system

Let the parameters of the system in Fig. 3.9 be α = 0, β = 1, k = 100 N/m,
v = 10 Ns/m and m = 1 kg. Let further the output of the system be the dis-
placement of the rightmost mass and the input be the force applied on the other
mass. A numerical state-space representation, see Eq. (3.85), is then

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−200 100 −1 1
100 −100 1 −1

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ C = [0 1 0 0

]

for which the eigenvalues to three significant digits are λ1,2 = −.0527 ± 6.18i
and λ3,4 = −.947 ± 16.14i [rad/s] and the transformed system on diagonal
form is

Ā =

⎡
⎢⎢⎣

−.0527 − 6.18i 0 0 0
0 −.0527 + 6.18i 0 0
0 0 −.947 − 16.1i 0
0 0 0 −.947 + 16.1i

⎤
⎥⎥⎦
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B̄ =

⎡
⎢⎢⎣

.269 − .00555i

.269 + .00555i
−.427 + .00779i
−.427 − .00779i

⎤
⎥⎥⎦

C̄ = [−.00116 + .136i −.00116 − .136i .000435 + .0326i .000435 − .0326i
]

The corresponding real-valued 2 × 2 block-diagonal realization is

Ā =

⎡
⎢⎢⎣

−.0527 −6.18 0 0
6.18 −.0527 0 0
0 0 −.947 −16.1
0 0 16.1 −.947

⎤
⎥⎥⎦

B̄ =

⎡
⎢⎢⎣

.533
.0111
−.853
−.0158

⎤
⎥⎥⎦ C̄ = [−.00116 .136 .000435 .0326

]

A root locus plot of pole positions for various combinations of parameters α1

and α2 can be seen in Fig. 3.10. From that, it can be noted that some parameter
combinations render coalescing poles that are the subject of the succeeding
numerical example.
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Fig. 3.10 Root locus of four system poles for discrete step variation of α with fixed β = 1
(red) and of varying β with fixed α = 1 (black). Arrows indicate increasing parameters α and
β. Asterisks (with values of α and β) indicate where poles coalesce which result in deficient
systems

�
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State-Space Realization on Jordan Normal Form. For some systems with
repeated eigenvalues, i.e., λk = λk+1 = . . . = λk+mk , with multiplicity mk + 1 it is
impossible to form the same number of eigenvectors to diagonalize the system. Such
systems have a deficient system matrix A with lesser than n unique eigenvectors and
its principal vectors (sometimes called generalized eigenvectors) need to be found as
the missing columns ofT to form theminimal system, called the Jordan normal form
Λ. That system is minimal in the sense that it gives a minimal number of couplings
between its states and at the maximum couples states two-by-two. Systems with
rigid-body modes or critical viscous damping are examples of such, as are illustrated
by three examples below. The structure of the minimal coupling form is given by the
following theorem.

Jordan Normal Form Theorem: If A ∈ R
n×n , then there exists a full rankT ∈

C
n×n such that T−1AT = blockdiag(J1, . . . , Jt ) is block diagonal with Jordan

blocks Jk related to eigenvaluesλk with multiplicitymk and
∑t

k=1 mk = n. The kth
such block is

Jk =

⎡
⎢⎢⎢⎢⎢⎣

λk 1 0
λk 1

. . .
. . .

λk 1
0 λk

⎤
⎥⎥⎥⎥⎥⎦

mk×mk

(3.145)

Proof See Halmos (1958). �

� Three variants of the two-degree-of-freedom example
Let the parameters of the system in Fig. 3.9 be such that (a) α = 1 and β = 0,
(b) α = 0 and β = 1.553, and (c) α = 1 and β = √

2. In all three cases k = 100
N/m, v = 10 Ns/m and m = 1 kg. This will render; (a) an undamped system
with one rigid-body mode, (b) a system with one critically damped mode, and
(c) a system with both one rigid-body mode and one critically damped mode.
Principal value calculation will then give the following transformation matrices
and resulting system matrices on Jordan normal form:

(a)

T =

⎡
⎢⎢⎣

.5 0 +.0177i −.0177i

.5 0 −.0177i +.0177i
0 0 +.25 +.25
0 0 −.25 −.25

⎤
⎥⎥⎦ Ā =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 −14.1421i 0
0 0 0 14.1421i

⎤
⎥⎥⎦

(b)

T =

⎡
⎢⎢⎣

−.0378 −.0015 +.0222 − 0.1153i +.0222 + .1153i
+.0545 +.0043 −.0111 − 0.1500i −.0111 + .1500i
+.5685 −.0158 +.7537 + 0.2039i +.7537 − .2039i
−.8200 −.0106 1 1

⎤
⎥⎥⎦
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Ā =

⎡
⎢⎢⎣

−15.0372 1 0 0
0 −15.0372 0 0
0 0 −.4931 + 6.6319i 0
0 0 0 −.4931 − 6.6319i

⎤
⎥⎥⎦

(c)

T =

⎡
⎢⎢⎣

+.0499 +.0035 −.7071 0
−.0499 −.0035 −.7071 0
−.7053 +.0002 0 −.7071

−.0002 0 −.7071

⎤
⎥⎥⎦

Ā =

⎡
⎢⎢⎣

−14.1421 1 0 0
0 −14.1421 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

�

State-Space Realization on Balanced Form. Moore (1981) has showed that it
is possible to find a similarity transformation x = Tbz such that the controllability
Grammian of Eq. (3.134) G∞

c and the observability Grammian G∞
o of Eq. (3.135)

simultaneously become diagonal and equal (balanced), i.e., G∞
c = G∞

c . The corre-
sponding state-space model

ż = T−1
b ATbz + T−1

b Bs (3.146)

r = CTbz + Ds

is called a balanced realization, withGrammians balanced over the control and obser-
vation range [0,∞].

The procedure to obtain the balancing transformation involves the solution of two
Lyapunov equations and goes as the following.

Balancing procedure:

1. Solve two Lyapunov equations for matrices P and Q

AT PA − P + CT C = 0 AQAT − Q + BBT = 0. (3.147)

2. Make a Cholesky decomposition of the symmetric and positive definite Q

RT R = Q. (3.148)

3. Compute a singular value decomposition to obtain the singular value matrixΣ for
singular values in decreasing order in the relation
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UΣUT = RPRT . (3.149)

4. Then the balancing transformation Tb is given by

Tb = RT UΣ−1/2. (3.150)

It should be noted that, although the controllability and observability Grammi-
ans are both diagonalized and equal, the realization M̄ = {T−1

b ATb, T−1
b B, CTb, D}

related to Eq. (3.146) is generally not taken to diagonal form by the transformation
z = Tbx. For large-scale models with many states (say >10.000) it should also be
noted that the solution to the Lyapunov equations is very computationally demand-
ing. However, the balanced form is very well suited for model reduction as states
that contribute little to the input/output relation can be singled out by the associated
small elements of the diagonalized Grammians and by that reduced from the model.
State reduction schemes will be described next.

3.4.4 State-Space Reduction Based on Transfer Strength

Many model order reduction techniques have been developed in order to balance
the accuracy and simplicity of the systems, see Refs. (Antoulas 2005, Noor 1994,
Ersal et al. 2008). Eigenvalue-based model reduction techniques, such as dynamic
condensation, component mode synthesis, and modal truncation, continue to receive
attention due to their low computational cost and applicability for very large systems
(Varga 1995, Qu 2004). These approaches produce reduced-order models under the
assumption that the eigenmodes with eigenfrequencies in the vicinity or within the
dominant spectrum of the loading are the system’s dominant eigenmodes to be kept
in a reduced-order model.

One of the key features of the system is its input–output behavior and selection
metrics for reduction have been developed to best conserve this feature of the original
system. Skelton (1980, 1983) proposed a component cost analysis method for first-
order continuous-time systems which assigns a cost function associated with the
mean-squared system output under white noise stimuli. This method is best suited
for small-scale systems since it requires the computationally expensive solution of
a Lyapunov equation for the evaluation of the cost function. Another metric based
on the unit-step response was proposed by Aguirre (1993) and is based on a simple
formulation for either transfer function or state-space representation of the system.

Balancing Truncation. A reduction scheme that is popular in control engineering
is based on the balanced input–output relation M̄ = {T−1

b ATb, T−1
b B, CTb, D} ≡

{Ā, B̄, C̄, D}. It has the drawback of requiring the costly balancing operation but has
the beneficial properties given by the balancing reduction theorem below. Let M̄
be balanced with diagonal controllability and observability GrammiansGc = Go ≡
G ≡ diag(g). Partition the matrices related to the n̄ separated larger Grammians in



www.manaraa.com

68 3 Model Reduction Concepts and Substructuring Approaches for Linear Systems

g1 from the n smaller in g1 of G as

G =
[
g1 0
0 g2

]
Ā =
[

Ā11 Ā12

Ā21 Ā22

]
B̄ =
[

B̄1

B̄2

]
C̄ = [C̄1 C̄2

]
(3.151)

Let further the systems S ∈ R
(n+nr )×(n+ns ) and Sr ∈ R

(n̄+nr )×(n̄+ns ) be

S =
[

Ā B̄
C̄ 0

]
Sr =

[
Ā11 B̄1

C̄1 0

]
(3.152)

The model M̄r = {Ā11, B̄1, C̄1, D} is then a reduced-order system obtained from
{Ā, B̄, C̄, D} by balanced truncation. It has some guaranteed properties related to
stability, controllability, observability, and impulse response which are given by the
following theorem.

Balancing Truncation Theorem: Given the controllable, observable, and stable
system M̄, the reduced-order system M̄r obtained by balanced truncation have the
following properties:

1. M̄r is balanced and has no unstable poles.
2. If λp = eig(A11) �= λq = eig(A22)/∀p, q then M̄r is controllable and observ-

able.
3.Let the ordered singular values of Sbeσi , i = 1, 2, . . . , q and let f ur ther the

number of singular values of Sr be k wi th k < q. The Hankel H∞-norm of the
difference between the full-order systemS and the reduced-order systemSr is then
twice the sum of neglected Hankel singular values as: ||S − Sr ||H∞ ≤ 2(σk+1 +
. . . + σq)

Proof See Antoulas (2005). �

The last part of the above theorem implies that if the neglected singular values are
small, the frequency response functions of M and Mr are close. The error bounds
of continuous-time and discrete-time state-space model reduction were established
by Glover (1984) and Enns (1984).

Modal Truncation. To obtain accurate reduced-order modal state-space models,
it is necessary to determine the dominant eigenmode subset which keeps the most
important features of the system. In the simplest form given by Davison (1966), the
lowest damped modes has been considered as the dominant subset to be kept while
the complement set was eliminated. The shortcoming of this reduction approach
is that the retained modes can be selected from the uncontrollable or unobservable
eigenvalue subspace of the original system. Such modes do not contribute to the
input–output relation of the system at all. Thus, the created reduced-order model is
not minimal. In Varga (1995), the original system is divided to several subsystems
which are in the balanced form. In each subsystem, eigenmodes with largest Hankel
singular values (the square root of the eigenvalues of the product of the observability
and controllability gramians) are considered as dominant modes to retain.
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A frequency-limited intervalmodal dominancy index for continuous-time systems
with both under-damped and over-damped eigenvalueswas introduced byVakilzadeh
et al. (2014, 2014). The index quantify the two-norm contribution of each eigenmode
to the system output deviation. Thus, the nondominant modes with less output contri-
bution can be identified and excluded to obtain the appropriate reduced-order model.
The main advantage of this index is that it is on explicit form in terms of modal
contribution and the frequency bound of interest. In addition, the retained low-order
model does not contain any uncontrollable and unobservable modes.

Consider the diagonal (i.e., modal) realization of a linear, time invariant, and
stable continuous-time system given by Eq. (3.139). Let the partitioned diagonalized
state-space representation be

[
ż1
ż2

]
=
[
Λ1 0
0 Λ2

] [
z1
z2

]
+
[

B̄1

B̄2

]
s

r = [C̄1 C̄2
] [z1

z2

]
+ Ds, (3.153)

where z1 contains the nr modal coordinates to be retained in the low-order system
and Λ1 is a diagonal matrix which involves the nr dominant eigenvalues of the
full system S = (Λ, B̄, C̄, D). Thus, the truncated system can be written as Sr =
(Λ1, B̄1, C̄1, D).

The low-order model obtained by modal truncation has some guaranteed proper-
ties. First, the H∞ norm of the difference between the full model and the low-order
model has an a priori upper bound. In diagonalized form, the difference between
the transfer functions of the full model G(S, ω) and the reduced-order model,
Gr (Sr , ω), can be written as (see Eq.3.144)

G(S, ω) − Gr (Sr , ω) =
ns∑

k=nr +1

c̄k b̄k

iω − λk
(3.154)

Thus, the H∞ norm of the error system is upper bounded by the following expres-
sion

||G(S, ω) − Gr (Sr , ω)||∞ = sup
ω∈	

[σ̄ (G(S, ω) − Gr (Sr , ω))] ≤ −
ns∑

k=nr +1

σ̄ (c̄k b̄k)

Re(λk)

(3.155)

where σ̄ (.) is the largest singular value of matrix (.). Secondly, the eigenvalues of the
low-order model is a subset of the eigenvalues of the original model and therefore
they keep their physical interpretations (Ersal et al. 2008), e.g., the modal truncation
preserves the stability property of the full system.

The upper bound of Eq. (3.155) hints to a reduction strategy to yield the low-
order model. It remains to be determined which set of eigensolutions to be used in
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the reduced-order model in order to conserve the input–output behavior of the full
system to as large extent as possible. To this end, let the k:th modal coordinate of the
diagonalized state-space equation be described by

żk = λk zk + b̄ks

Δrk = c̄k zk, (3.156)

where the stimuli vector s ∈ Rns is unit-impulse at t = 0 and the response vector
Δrk ∈ Rnr are the modal contributions to the system output. The following metric
(or dominance index) quantify the contribution of the k:th mode to the full system
output

Mk =
∫ ∞

0
(Δr H

k Δrk)dt. (3.157)

According to Parseval’s theorem this dominance index can be transformed into
the frequency domain as

Mk =
∫ +∞

−∞
(ΔRk(ω)HΔRk(ω))dω. (3.158)

Utilizing the Laplace transformation, the input–output relation can be written as

ΔRk = c̄k(iω − λk)
−1b̄kS(ω) (3.159)

With a unit-impulse signal (S(ω) = 1∀ω) and a substitution of Eq. (3.159) into
Eq. (3.158) then leads to

Mk =
∫ +∞

−∞
b̄H

k (iω − λk)
−1c̄H

k c̄k(iω − λk)
−1b̄kdω = −π b̄H

k c̄H
k c̄k b̄k

Re(λk)
. (3.160)

However, most loading situations of relevance here are such that the (one-sided)
load spectrum is dominated by the content in a specific frequency region from ω1

thru ω2. For the reduced-order model to more accurately represent the behavior in
this frequency region, the frequency information of the input can be taken into the
account by assuming that S(ω) = 1 ∀ω = [ω1, ω2] and S(ω) = 0 elsewhere. That
leads to the following frequency-weighted metric

M̄k =
∫ ω2

ω1

(ΔRk(ω)HΔRk(ω))dω. (3.161)

With Eq. (3.159) this then leads to

M̄k = b̄H
k c̄H

k c̄k b̄k

Re(λk)
(atan(ω1 − Im(λk)) − atan(ω2 − Im(λk)) (3.162)
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Based on this metric, a frequency interval dominancy based definition of modal
dominancy can be introduced; Definition: For a given threshold value ε ≥ 0 and
frequency interval [ω1, ω2], let nr be the number of metrics for which M̄k > ε for
k = 1, 2, . . . , nr . The modes associated to this are the dominant modes.

As a consequence, the full model has nr dominant and nx − nr nondominant
eigensolutions. An important feature of this metric is that the retained dominant
eigenvalue subspace is both controllable and observable since each non-observable
or noncontrollable mode k would render M̄k = 0.

A fuller description of the reduction procedure, also treating the case with sets of
nonunique coalescing eigenvalues, together with a numerical example that illustrates
its performance is given in Vakilzadeh et al. (2015).
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Chapter 4
Experimental Substructuring

Abstract In this chapter, we outline techniques to use measured dynamic charac-
teristics of components to build an assembled model. Although the basic theory is
pretty straightforward, the difficulty in experimental substructuring lies in the limi-
tations in what can be measured and the special techniques needed to alleviate errors
in the measured signals.—(Chapter Authors: Daniel Rixen, Maarten van der Seijs,
Randall Mayes, Matt Allen & Thomas Abrahamsson)

4.1 Introduction

The substructuring methods discussed in previous chapters are equally applicable
when any of the data for a substructure is replaced with experimental data. However,
established methods exist to measure some quantities, such as the free-free natural
frequencies of a structure, while other quantities, such as the constraint modes in
a Hurty/Craig–Bampton model, may be practically impossible to measure. In the
theory so far, we have seen that a wide variety of substructuring methods are based
on the following formulations (recalled here for the frequency domain):

General form

⎧
⎨

⎩

Zū = f̄ + ḡ
Bū = 0
LT ḡ = 0

(2.33)

Primal Assembly Zgug = fg with Zg = LTZL and fg = LT f̄ (2.39)

Dual Assembly

[
Z BT

B 0

] [
ū
λ

]

=
[
f̄
0

]

(2.45)

The key consideration now is, what domain should we use to describe Z (i.e.,
modal domain, time domain, etc.) and what measurements can we obtain? A few
common options are reviewed briefly here:
© CISM International Centre for Mechanical Sciences 2020
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Frequency Response Function (FRF) Measurements

Recall that for frequency-domain measurements, Z is the dynamic stiffness of a
structure, and while it cannot typically be measured, one can measure the inverse or
frequency response Y(ω) = Z(ω)−1.

Y(s)(ω) = Z(s)(ω)−1 = (−ω2M(s) + iωC(s) + K(s)
)−1

. (2.16)

If we apply a force (i.e., with a shaker, impact hammer, etc.) or input at point j and
measure the response (i.e., with an accelerometer, laser vibrometer, etc.) or output at
point i , then the element Y(s)

i j (ω) can be measured at the excitation frequency, ω. In
practice, a force is applied over some range of frequencies, transient measurements
are acquired in the time domain, and FFT techniques are used to obtain the FRF over
a range of frequencies.

Typically, a set of measurements is obtained by includingmultiple response trans-
ducers so i = 1...No where No is the number of output points and multiple inputs
(or drive points) can also be used so that j = 1...Ni . Hence, one can eventually
obtain a matrix of FRFs, Y(s)(ω) at enough points so that an adequate model of the
substructure can be obtained and coupled to other substructures, as elaborated later.
Measurements may be used to create a model for one of the substructures (e.g., for
s = 1) and the others would presumably be modeled numerically.

Measuring Modal Parameters

In the physical domain, a system model can be described in terms of the mass,
damping, and stiffness matrices, but as was the case with dynamic stiffness, these
matrices cannot typically be measured.

M(s)ü(s) + C(s)u̇(s) + K(s)u(s) = f (s) + g(s). (2.2)

However, given a set of either time- or frequency-domainmeasurementswith Ni ≥ 1,
one can extract a modal model of the structure of the following form:

M̃
(s)
q̈(s) + C̃

(s)
q̇(s) + K̃

(s)
q(s) = f̃

(s) + g̃(s)
, (2.9)

where q ∈ R
Nm with Nm the number of vibration modes that are extracted from

the measurements. Assuming that the modal masses have been mass normalized,

the mass matrix is an identity, M̃
(s) = [I], and C̃

(s) = [\2ζrωr \
]
, K̃

(s) = [\ω2
r \
]
are

defined by the modal parameters, i.e., the modal natural frequency ωr and modal
damping ratio ζr for modes r = 1...Nm . The measured mode shapes at points i =
1...No are used to populate themass normalizedmode shapematrix,φ, which appears

in the force term f̃
(s) = φ(s)T

f (s). The resulting equation of motion is as follows:

[I](s)q̈(s) + [\2ζrωr \
](s)

q̇(s) + [\ω2
r \
](s)

q(s) = φ(s)T
f (s) + g̃(s)

. (4.1)
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This experimental and modal representation of the dynamics of substructures can
also be used to build an assembled system as will be shown later, one challenge
being to express the interface conditions between physical DOF when only modal
amplitudes are used as unknowns.

Fitting a modal model for each component and performing the assembly using
the modal information is a very attractive approach, especially when the measure-
ments of the frequency responses are not good enough to estimate the impedances
of the substructures. Although such an approach can lead to good results for some
structures (as explained later), the local modal information could be insufficient to
properly combine components. In addition, the modal approach is hardly applicable
for components with a high modal density. Note that the so-called “structural mod-
ification” techniques as implemented in several commercial testing software can be
seen as a special case of substructuring, where simple components (lumped masses,
springs...) can be added to the measured component, often using modal models of
the test object (see, e.g., Avitabile 2003).

4.2 Why Is Experimental Substructuring So Difficult?

To elucidate some of the issues that are encountered in experimental substructuring,
consider two beam substructures to be connected in a lap joint configuration with
ten bolts as shown in Fig. 4.1.

1. In classical frequency-based substructuring, one requires the drive point and trans-
fer FRFs to be measured for every connection DOF. For this case, if one considers
one connection node per bolt, and three translations and three rotations per node,
then a matrix of 60× 60 connection FRFs must be measured for each beam and
there are two beams. Also, in order tomeasure the rotations, wewould need a rota-
tional accelerometer in three directions, mounted exactly at the connection point
and a hammer or shaker that applies a pure moment (i.e., no translational force)
as an input; hardware does not exist that can reliably meet these requirements.
Hence, one may decide, for logistical reasons, to measure only the translational
components of force and motion. However, this will eliminate 3/4 of the FRF
matrix, and in many cases one cannot expect that 3/4 of the FRF matrix is negli-
gible.

Fig. 4.1 Sample substructuring problem where two beams are joined by 10 bolts, represented by
vertical lines
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a. How does one place a sensor or actuator at every DOF. Remember there is a
“hole” at the idealized connection point. Should the bolt be left in and apply
forces and mount sensors on that? How does one apply a perfect shear force,
or measure a shear acceleration right at the idealized point of connection?

b. If the two 60× 60 FRF matrices are successfully measured, how does one
account for the compliance and damping of the interface? Traditional meth-
ods “weld” the connection DOF together with no interface compliance or
damping, but actual joints are known to have finite stiffness and often have
non-negligible damping.

c. Drive point FRFs are already ill-conditioned for the required inversion,
and measurement errors are known to make the inversion even more ill-
conditioned often producing spurious resonances.

d. This example has idealized connection to 10 nodes, but in reality, connec-
tions between parts are continuous and span the area of the lap joint.

Some of the difficulties enumerated above can be addressed by performing sub-
structuring in the modal domain, i.e., CMS substructuring.

2. Consider the requirements associated with classical CMS substructuring.

a. Here, there is not a requirement to apply a force to every connectionDOF, but
only to excite all the modes active in the required frequency band. With this
approach, at least, the pesky requirement to apply moments is eliminated.

b. Again it is difficult to make the translation and rotation measurements and
accurately extract all the connection DOF mode shapes.

c. For a free-mode basis set, extremely accurate rigid body mode shapes are
required as well. (In fact, the rigid body mode shapes are often more impor-
tant than anyof the elasticmode shapes.) These are often not easy tomeasure.
Often these analytical estimates or mass properties’ measurement provide
better estimates of these than low-frequency modal methods.

d. The extracted mode shapes eliminate the random noise on FRFs but do not
eliminate gage bias errors or bias errors introduced by the modal extraction.

e. In general, fixed base modes are difficult to obtain by testing simply because
not truly fixed base exists, so one extracts some sort of “free” set.

f. The free-mode shapes of substructures in the bandwidth of interest are often
not an adequate basis set to span the space of the connected motion. In the
analytical realm, free modes are augmented with residual flexibilities and
then they often form a suitable basis. Efforts have been made to measure
these residuals, but this once again requires force and moment inputs at
all of the connection DOF. Since the residuals represent the flexibility of
out of band modes, one might think to instead extract several modes above
the frequency bandwidth of interest, but this is typically difficult and often
many, many modes are needed to obtain convergence.
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� Anexample is shown inFig. 4.2.Afinite elementmodelwas used to represent
the red cylindrical substructure and measurements were used to obtain the free
modes of the flange with the beam attached (i.e., the plate-beam system in cyan
and green). The residual flexibilities were not measured, and the CMS method
was used to couple a free-mode model of the plate beam with the FEM of the
cylinder and then the modes of that model were used to reconstruct the drive
point FRF at the end of the beam. The substructuring prediction is shown in red,
with the test data measured from an actual assembly in blue. The plate attaches
to the cylinder by eight bolts and all rotations and translations are included in
the connection DOF. 100 modes of the cylinder were used and all the modes
of the plate and beam to 4000Hz. The goal was to produce an accurate model
up to 2000Hz. This example clearly shows that free modes are not adequate
to obtain a reasonable match for this drive point in the combined system. It
should be noted that when two components are coupled together loosely, i.e.,
using rubber bushings, then a free-mode model often can prove effective. The
discussion here focuses primarily on substructures that connect move rigidly.

Fig. 4.2 Substructuring prediction of response at point 1000y (axial direction) for the cylinder-
plate-beam system

�

In summary, the CMS approach that is traditionally used in finite element analysis
does not generally address the interface compliance, interface damping, or continuous
connection issues that are problematic in experiments. Techniques to address these
several problems in the physical DOF space will be addressed in this lecture note.
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4.3 Basics of Frequency-Based Substructuring (FBS)

In this section, the Frequency-Based Substructuring method (FBS), as typically
applied when the components are dynamically identified by measurements, will be
explained. Although the substructuringmethod is mainly discussed for the frequency
domain (since that is often the domain in which experimental data is considered),
writing it for the time or the Laplace domain is straightforward. It will become clear
why a dual approach to substructuring is commonly the method of choice in practi-
cal applications, although a primal assembly impedances would be mathematically
equivalent.

The idea to build a dynamic model of an assembly using the measured dynamic
properties of its components was already considered in the early 70s Klosterman
(1971), Crowley et al. (1984) where the Structural Modification Using Response
Functions (SMURF) method was developed. However, although not very challeng-
ing from a theoretical point of view, it became rapidly clear that the inaccuracy in
the measurements and the number of measurements needed for a complex structure
render the application of the idea in practice difficult. The main problem is the fact
that the quantities that can be measured are the inverse of what might be desired.
Computational models can readily compute the dynamic impedance (or dynamic
stiffness), and it is then a trivial matter to assemble the stiffnesses from various com-
ponents (as is done when assembling finite element stiffness matrices). In contrast,
in experiments one can measure the component admittances or frequency responses,
which are the inverse of the dynamic impedance. While the impedance is simply the
inverse of the admittance, this inverse can typically not be computed for two reasons:
First, the full impedance/admittance matrix is needed to compute the inverse, and
one can never measure all of the degrees of freedom (there are infinitely many for a
continuous structure) and one does not even know how many might be needed for
an adequate finite element representation. Second, errors in the measured dynamic
flexibilities make it very challenging to invert the component admittances and obtain
impedances.

The topic was further investigated at the end of 80s Jetmundsen et al. (1988),
Urgueira (1989)where different formalismswere proposed, but the basic problems of
the method still remained. Around the same time, Imregun (1987), Otte et al. (1991),
Lim and Steyer (1992), Martinez et al. (1984), Martinez et al. (1985) looked into
techniques to“clean” the measurements, for instance, using truncated singular value
decomposition techniques in order to regularize the inverse inherent to experimental
substructuring. But applications remained only partly successful.

Motivated by the tremendous potential of experimental substructuring and the
advent of affordable and high-quality measurement hardware and software, the topic
received new attention in the years 2000 Rixen et al. (2006), de Klerk (2006), Sjö-
vall (2006), Carne and Dohrmann (2006), Allen and Mayes (2007). Over the last
15years, a general formalism has been developed for the method and several new
ideas where proposed to properly perform the measurements of the components and
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to avoid situations in which measurement errors cause the assembled models to be
meaningless. The most important techniques will be outlined later in this text.

4.3.1 Lagrange Multiplier FBS—the Dual Interface Problem

Let us consider again the dual form of an assembled system made of several compo-
nents (see (2.45), Sect. 2.3), dropping for simplicity the bar superscript introduced
earlier to indicate that the DOF is to be interpreted as complex amplitudes in the
frequency domain: [

Z BT

B 0

] [
u
λ

]

=
[
f
0

]

, (4.2)

where

Z =
⎡

⎢
⎣

Z(1) 0
. . .

0 Z(N sub)

⎤

⎥
⎦

u =
⎡

⎢
⎣

u(1)

...

u(N sub)

⎤

⎥
⎦ f =

⎡

⎢
⎣

f (1)

...

f (N sub)

⎤

⎥
⎦ λ =

⎡

⎢
⎣

λ1
...

λnλ

⎤

⎥
⎦

are the block diagonal matrices containing the impedances, DOF, and external forces
of the unassembled substructures, where B is the signed Boolean matrix of suit-
able dimension, which expresses the interface compatibility constraints (see (2.29),
(2.30)) and λ the associated Lagrange multipliers representing the internal forces
in the interface between substructures. An interpretation of the B and the Lagrange
multipliers is given Fig. 2.3.

The substructure displacements, u, in this dual form can be solved to obtain the
substructure displacements as functions of the forces, λ, using the dynamic equilib-
rium:

u = Y(f − BT λ), (4.3)

where

Y =
⎡

⎢
⎣

Y(1) 0
. . .

0 Y(N sub)

⎤

⎥
⎦ =

⎡

⎢
⎣

Z(1)−1
0

. . .

0 Z(N sub)−1

⎤

⎥
⎦ = Z−1 (4.4)

is the block matrix containing the substructure admittances. Equation (4.3) contains
the unassembled substructure dynamic equilibrium equations
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u(s) = Y(s)(f (s) − B(s)T
λ), (4.5)

where the coupling is guaranteed by theLagrangemultipliers, unique betweenmatch-
ing DOF across the interface, representing the interface forces and the amplitude of
which is determined by the compatibility condition contained in the last line of (4.2).
Substituting (4.3) into the compatibility condition yields

BY(f − BT λ) = 0

that can be re-organized as

(BYBT )λ = BYf (4.6)

or, substructure-wise,

⎛

⎝
N sub
∑

s

B(s)Y(s)B(s)T

⎞

⎠λ =
N sub
∑

s

B(s)Y(s)f (s). (4.7)

Problem (4.6) (or its form (4.7)) is commonly referred to as the Dual Interface
Problem: it contains nλ compatibility equations for the unknown internal Lagrange
multipliers on the interface. It can be interpreted as follows:

The external forces f (s) are applied to the substructures, creating substructure
responses Y(s)f (s) and generating interface incompatibilities BYf (Fig.4.3b). In
order to prevent those interface “gaps”, internal forces must exist on the interface

and have amplitudes such that the response YB(s)T
λ that they generate on each side

of the interface closes the gap originating from the external forces (Fig. 4.3c).
The dual interface problem for the amplitudes of the Lagrange multiplier is a

global problem since a Lagrange multiplier between two substructures will affect
the response of those substructures also on the interface with other substructures.
The operator

(c)(b)(a)

Fig. 4.3 Interpretation of the dual interface problem (4.7): a Substructured problem, b Effect of
local force in Ω(1), c Global effect of λ to enforce compatiblity



www.manaraa.com

4.3 Basics of Frequency-Based Substructuring (FBS) 83

FI = (BYBT ) =
⎛

⎝
N sub
∑

s

B(s)Y(s)B(s)T

⎞

⎠ (4.8)

in the dual interface problem is often called the dually assembled interface flexibility.

4.3.2 Lagrange Multiplier FBS—the Dually Assembled
Admittance

The dual interface problem (4.48) can be used to compute the interface Lagrange
multipliers, namely,

λ = (BYBT )−
1
BYf, (4.9)

and substituting this result in the dynamic equation (4.3) for the substructure response
finally yields

u = Y
(
f − BT (BYBT )−

1
BYf

)
=
(
Y − YBT (BYBT )−

1
BY
)
f . (4.10)

The different terms in this formula can easily be interpreted if one considers the way
it was found:

u =
(

uncoupl.
︷︸︸︷
Y

coupling
︷ ︸︸ ︷

−YBT (BYBT )−
1
BY︸︷︷︸
Δ

︸ ︷︷ ︸
λ

)
f .

This will be illustrated in the simple example below.
Comparing now this result with the definition for the assembled admittance of the

system
u = Yg,dualf,

we can write

Yg,dual =
(
Y − YBT (BYBT )−

1
BY
)

. (4.11)

This is the final formula for the dual assembly of substructure admittances.
Note: this admittance operates on the force vector f , which contains the external

forces defined on each uncoupled substructure, and returns the response, u, for all
DOF of the separated substructures. In other words, the dually assembled admittance
is defined for all DOFon each side of an interface.Obviously, by construction,Yg,dual
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is identical for all corresponding DOFs on the interface and thus the information in
Yg,dual is redundant. This redundancy can easily be eliminated by keeping inYg,dual

only the row and line corresponding to one of the redundant DOFs on the interface.

� In order to illustrate the technique, let us consider a simple assembly problem
of two bars as described in Fig. 4.4 for which the block matrices of the non-
assembled problem can readily be seen to be

Fig. 4.4 A simple assembly problem of two bars

u =

⎡

⎢
⎢
⎢
⎢
⎣

u(1)
2

u(1)
3

u(2)
1

u(2)
2

⎤

⎥
⎥
⎥
⎥
⎦

f =

⎡

⎢
⎢
⎢
⎢
⎣

f (1)
2

f (1)
3

f (2)
1

f (2)
2

⎤

⎥
⎥
⎥
⎥
⎦

Y =

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
22 Y (1)

23 0 0

Y (1)
32 Y (1)

33 0 0

0 0 Y (2)
11 Y (2)

12

0 0 Y (2)
21 Y (2)

22

⎤

⎥
⎥
⎥
⎥
⎦

B = [0 1 −1 0
]
.

Applying the formula (4.11) to compute the assembled admittance, we find

⎡

⎢
⎢
⎢
⎢
⎣

u(1)
2

u(1)
3

u(2)
1

u(2)
2

⎤

⎥
⎥
⎥
⎥
⎦

= Yassemb.

⎡

⎢
⎢
⎢
⎢
⎣

f (1)
2

f (1)
3

f (2)
1

f (2)
2

⎤

⎥
⎥
⎥
⎥
⎦

,

where

Yassemb. =

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
22 Y (1)

23 0 0

Y (1)
32 Y (1)

33 0 0

0 0 Y (2)
11 Y (2)

12

0 0 Y (2)
21 Y (2)

22

⎤

⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
23

Y (1)
33

−Y (2)
11

−Y (2)
21

⎤

⎥
⎥
⎥
⎥
⎦

(
Y (1)
33 + Y (2)

11

)−1 [
Y (1)
32 Y (1)

33 −Y (2)
11 −Y (2)

12

]
.
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This result can be interpreted as follows:
• When applied to the non-assembled (uncoupled) system, the external forces
produce a response

⎡

⎢
⎢
⎢
⎢
⎣

u(1)
2

u(1)
3

u(2)
1

u(2)
2

⎤

⎥
⎥
⎥
⎥
⎦

uncoupl.

=

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
22 Y (1)

23 0 0

Y (1)
32 Y (1)

33 0 0

0 0 Y (2)
11 Y (2)

12

0 0 Y (2)
21 Y (2)

22

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

f (1)
2

f (1)
3

f (2)
1

f (2)
2

⎤

⎥
⎥
⎥
⎥
⎦

,

which corresponds to the first part of the solution.
• This response does not account for interface coupling and would create an
interface incompatibility (or “gap”) equal to

Δ = Buuncoupl. = u(1)
3 − u(2)

1 = [Y (1)
32 Y (1)

33 −Y (2)
11 −Y (2)

12

]

⎡

⎢
⎢
⎢
⎢
⎣

f (1)
2

f (1)
3

f (2)
1

f (2)
2

⎤

⎥
⎥
⎥
⎥
⎦

.

• In order to close this incompatibility gap on the interface, an interface force
g of amplitude λ

λ =
(

Y (1)
33 + Y (2)

11

)−1
Δ

must exist, where Y (1)
33 + Y (2)

11 is the flexibility of the interface similar to the
flexibility of two springs in series.

• Since the interface force g is internal (actio-reactio):

⎡

⎢
⎢
⎢
⎢
⎣

g(1)
2

g(1)
3

g(2)
1

g(2)
2

⎤

⎥
⎥
⎥
⎥
⎦

= −BT λ =

⎡

⎢
⎢
⎣

0
−λ

λ

0

⎤

⎥
⎥
⎦

and it will produce a response in the substructure equal to

⎡

⎢
⎢
⎢
⎢
⎣

u(1)
2

u(1)
3

u(2)
1

u(2)
2

⎤

⎥
⎥
⎥
⎥
⎦

coupling

=

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
22 Y (1)

23 0 0

Y (1)
32 Y (1)

33 0 0

0 0 Y (2)
11 Y (2)

12

0 0 Y (2)
21 Y (2)

22

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
−λ

λ

0

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
23

Y (1)
33

−Y (2)
11

−Y (2)
21

⎤

⎥
⎥
⎥
⎥
⎦

λ.
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So, the dually assembled response (4.12) can be interpreted as the combined
response to the external forces on the unassembled system and to the internal
interface forces necessary to keep the substructure together when excited by the
external forces:

uncoupl.
︷ ︸︸ ︷
⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
22 Y (1)

23 0 0

Y (1)
32 Y (1)

33 0 0

0 0 Y (2)
11 Y (2)

12

0 0 Y (2)
21 Y (2)

22

⎤

⎥
⎥
⎥
⎥
⎦

coupling
︷ ︸︸ ︷

−

⎡

⎢
⎢
⎢
⎢
⎣

Y (1)
23

Y (1)
33

−Y (2)
11

−Y (2)
21

⎤

⎥
⎥
⎥
⎥
⎦

(
Y (1)
33 + Y (2)

11

)−1 [
Y (1)
32 Y (1)

33 −Y (2)
11 −Y (2)

12

]

︸ ︷︷ ︸
Δ

︸ ︷︷ ︸
λ

Since, after coupling, u(1)
3 = u(2)

1 , the second and third rows of the so-obtained
assembled admittance Yassemb. are identical. Also, since it makes no difference
how the external force on the assembled interface is split ina f (1)

3 and f (2)
1 , the

second and third columns ofYassemb. are identical. Therefore, one could delete,
for instance, the third row and column and write the nonredundant relations

⎡

⎣
u(1)
2

u(1)
3 = u(2)

1

u(2)
2

⎤

⎦ = Yg

⎡

⎣
f (1)
2

f (1)
3 + f (2)

1

f (2)
2

⎤

⎦ ,

and using the notation for the global primal variables as in (2.39) one can write
this also as

ug = Ygfg = Z−1
g fg.

�
aDifferent splittings of the external force on the interface will produce the same assembled
response, but will produce different amplitudes λ.

4.3.3 On the Usefulness of Dual Assembly of Admittance in
Experimental Substructuring

The LM-FBS discussed in the previous sections is based on dual assembly (also
sometimes called admittance-based substructuring) and was explained in frequency
domain. Dual assembly approaches can also, without further difficulty, be written in
the time domain. The dual assembly in the time domain (so in essence the inverse
Fourier transform of the LM-FBS) was proposed in Gordis (1995), and the general
formulation was later written in Rixen (2010), Rixen and van der Valk (2013). The
method is based on the impulse responses at the interface of the substructures and
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was first developed as a simulation approach (also for multibody dynamics Géradin
and Rixen 2017). First attempts to use it as an experimental technique were only
partly successful Rixen (2010).

At this point, now that we have shown the basic algebraic techniques to find the
assembled admittance in a dual approach, onemightwonderwhy the primal approach
(which is more commonly known by engineers and seemingly more straightforward)
is not the method of choice in experimental dynamics.

As explained in Sect. 2.3, primal and dual assembly are mathematically equiva-
lent. Since the properties of the components are obtained during testing as admit-
tances (forces applied as input, responses measured as output), the dual approach
seems more natural, although it would be not less natural to compute the component
impedances (inverting themeasurements) and applying a primal assembly. The result
would be identical. So the real reason must be elsewhere.

The main reason to apply dual assembly in experimental dynamics comes from
the fact that measurements are never perfect, whereas numerical models are. (That is,
numerical models are at least consistent and physically realizable representations of
some dynamic system, even if they don’t capture the structure of interest as accurately
asmight be desired.) Consistencywill be further discussed in Sect. 4.9.2, but it is easy
to understand that, since measurement errors can be of any kind, there is no reason
why the measured admittance represents exactly a structural system. For instance, it
is very common that the eigenfrequencies or modal dampings as seen in the signals
of different outputs or as obtained from different inputs are not coinciding (e.g.,
additional mass effect of sensors or influence of shaker links). When using such
measurements of components, one typically observes so-called “spurious peaks” in
the FRFs of the assembled system (whether the assembly was performed in a primal
or in a dualmanner, since themethods aremathematically equivalent). An example of
spurious peaks in the assembled FRFdue to inconsistencies in the local admittances is
shown in Fig. 4.5. Spurious peaks were already considered in Imregun (1987) where
a smoothing procedure was proposed and a discussion of the appearance of spurious
peaks can be found for instance in Rixen (2008), Carne and Dohrmann (2006),
Nicgorski and Avitabile (2010). An analysis of error and uncertainty propagation in
the LM-FBSwas presented in Voormeeren et al. (2010). It allows giving a confidence
interval to the assembled FRFs when the uncertainty of the substructure admittance

Fig. 4.5 Example of
spurious peaks in an
assembled FRF Rixen (2008)
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is known (for instance, from the measurements). This will, however, not be further
discussed here.

In dual assembly techniques, the compatibility condition is explicitly consid-
ered next to the substructure equilibrium equations, the interface equilibrium being
ensuredby the very nature of theLagrangemultipliers. Therefore, aswill be explained
in the next section (and further developed in other parts), it is possible to weaken
the interface compatibility and thereby mitigate the effect of the errors in the
measurements.

Mathematically, the effects of the measurement errors manifest themselves when
the dual interface flexibility (4.8), needed to compute the interface Lagrange multi-
pliers, is inverted in the dually assembled admittance (4.11):

Yg,dual =
(
Y − YBTF−1

I BY
)

FI = (BYBT ) =
⎛

⎝
N sub
∑

s

B(s)Y(s)B(s)T

⎞

⎠ . (4.12)

Errors in the substructure admittances will be dramatically amplified, especially
if the conditioning of the admittance matrices is bad: if a structure is lightly damped,
then the admittancematrices will be nearly rank one in the vicinity of each resonance.
As a result, small measurement errors will generate large errors in the estimation of
the stiffness coefficients on the interface (that is, the stiffness of a single DOF when
all other DOF are fixed). The same type of error amplification would be found in a
primal assembly like (2.39) since the each local measured admittance would need to
be inverted to compute the local impedances.

The options to mitigate the effect of measurements errors can be classified into
three categories:

1. “clean” the measured admittances of the substructures, for instance, by applying
symmetrization on the measurement (e.g., Otte et al. 1991), by fitting a modal
model (this can remove noise but also useful information not well identified, and
it is applicable only if the modal density is not too high), or/and by applying
further corrections to impose consistency (see Sect. 2.3).

2. Apply (Tikhonov) regularization to compute the inverse by removing the compo-
nents corresponding to small singular values in FI (see, for instance, Otte et al.
1991, Gialamas et al. 2001, Moorhouse 2003).

3. The last option consists in weakening the interface compatibility in order to
enforce the interface to match only for smooth interface displacements, leaving
unassembled some deformation components related to high stiffness on either
side of the interface.

Although some successful applications were shown with the options 1 and 2,
strategy 3 can be based on mechanical interpretation and engineering insight can be
used. This will be briefly discussed in the following section.
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4.3.4 Weakening the Interface Compatibility

As explained above, weakening the interface compatibility requirements between
substructures can mitigate the measurement errors in the substructure admittances
that are responsible for very high errors in the computation (through inversion) of the
impedances (in the solution of the dual interface dual problem for the dual approach,
or in the computation of local impedances for the primal approach).

Let us consider once more the dually assembled Problem (4.2)

[
Z BT

B 0

] [
u
λ

]

=
[
f
0

]

, (4.2)

where we have assumed strong compatibility of the interface, meaning that we have
imposed all matching interface DOFs to be exactly equal (second set of equation
in (4.2)). If one, however, has a good idea of how the interface displacement will
look in the assembled system, one can weaken the compatibility requirement by only
requiring compatibility for the components of the interface displacements that are
important for the assembled solution.

Mathematically speaking, let us assume that we know a good representation space
VΓ rs for the displacements in the assembled system around an interface Γ rs between
two substructures s and r . The matrixVΓ rs contains, in its columns, a set of represen-
tation vectors that canwell approximate themotions of theDOFaround the assembled
interface. These vectors can be set up from engineering know-how (assuming, for
instance, a rigid behavior around the interface, i.e., the virtual point idea explained
later) or could be obtained from an approximate finite element model of the interface
region. In that subspace, the interface DOF of the substructures can be expressed as

u(s)
b � VΓ rs

b
β(s) and u(r)

b � VΓ rs
b

β(r), (4.13)

where VΓ rs
b

is the restriction to the interface of the common interface modes and
where β(r) and β(s) can be seen as the corresponding displacement amplitudes on
each side of the interface. Here, we assume that the number of representation modes
in VΓ rs is smaller than the numbers of interface DOF.

The compatibility condition1

u(s)
b − u(r)

b = 0 (4.14)

can be replaced by
VΓ rs

b
β(s) − VΓ rs

b
β(r) = 0 (4.15)

1Here, to simplify the presentation, we assume that the numbering on the DOF on each side of the
interface is identical. If this would not be the case, the constraint matrix B should be considered as
explained earlier.
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or equivalently (if VΓ rs
b

is full rank, i.e., if the vectors in the columns of VΓ rs
b

are
linearly independent)

β(s) − β(r) = 0, (4.16)

hence requesting that only the part of the substructure displacements living in the
subspace of VΓ rs

b
be compatible. The remainder of the interface displacement, on

each side of the interface, that is not representable inVΓ rs
b

is left free on the interface
and does not participate to the coupling of the substructures. This weak compati-
bility is the key to include only the important behavior in the coupling (usually well
captured by the measurements), leaving the remainder unassembled (since they may
be strongly affected or even dominated by measurement errors).

In order to write the weak compatibility as a condition on the DOF of the original
problem, the coordinates in the reduced space VΓ rs

b
can be computed by observing

that
u(s)

b = VΓ rs
b

β(s) + r(s), (4.17)

where r is a remainder that will not be made compatible and that one can request to
remain orthogonal to the interface representation space:

VT
Γ rs

b
Wr(s) = 0 (4.18)

W being any positive definite matrix defining the norm of the projection (usually
taken as the identity matrix). This condition leads to

β(s) = (VT
Γ rs

b
WVΓ rs

b
)−1VT

Γ rs
b
Wu(s)

b = V+
Γ rs

b
u(s), (4.19)

since (VT
Γ rs

b
WVΓ rs

b
)−1VT

Γ rs
b
W can be seen as a (weighted) pseudo-inverse of VΓ rs

b
.

The pseudo-inverse can equivalently be computed using a (weighted) singular value
decomposition. Similarly, we can write the following for the other side of the inter-
face:

β(r) = V+
Γ rs

b
u(r)

b , (4.20)

so that the compatibility condition (4.16) becomes

V+
Γ rs

b

(
u(s)

b − u(r)
b

)
= 0. (4.21)

The number of compatibility conditions in this form is equal to the number of repre-
sentation vector in VΓ rs , namely, less than the number of interface DOF, indicating
once more that the compatibility condition is weakened. The pseudo-inverse can
be seen as a (weighted) projection in the space of VΓ rs of the interface degrees of
freedom.
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To summarize, the weakening of the compatibility equation in general leads to a
dual assembly problem of the form

[

Z B̃
T

B̃ 0

][
u
λ

]

=
[
f
0

]

B̃ = BT, (4.22)

whereT is a projection of the interface DOF of the substructures onto a common sub-
space (usually per local interface). The Lagrange multipliers now give the amplitude
of the generalized forces associated with each deformation in the interface represen-
tation space. For example, for a simple case where two structures are coupled using
a rigid interface with six DOFs (three translations and three rotations), the Lagrange
multipliers would give the net force in each direction and the net moment in each
direction on each interface.

Following the same procedure as earlier to find the dually assembled admittance,
one finds

Yg,dual,weak =
(
Y − YB̃

T
(B̃YB̃

T
)−

1
B̃Y
)

B̃ = BT. (4.23)

Remark 1: A different interpretation of compatibility weakening

It is interesting to note that the weakened interface compatibility (4.21) can be trans-
formed by premultiplying it with (VT

Γ rs
b
WVΓ rs

b
), resulting in the equivalent weak

condition
VT

Γ rs
b
W(u(s)

b − u(r)
b ) = 0. (4.24)

This shows that the weak compatibility can also be interpreted as satisfying the
compatibility only when projected on a subspace, which in general can be expressed
by the weakening

Bu = 0 → VTWBu = 0.

This is strongly related to the so-called coarse space problem in dual assembly theory
(e.g., in the FETI parallel solution techniques).

Remark 2: The virtual point constraint

In order to illustrate the weakening idea, let us discuss two weak compatibility
conditions often used in practice. One possible choice for the representation of the
interface behavior consists in assuming that a part of the interface behaves rigidly (for
instance, a local bolted connection that can be considered as a point connection as
illustrated in Fig. 4.25). In that case, the representation space for the signal measured
around the connections can be taken as

VΓ rs = RΓ rs ,
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whereRΓ rs contains in its columns the six rigid bodymodes (three translations, three
rotations) around a virtual point on the interface.With those rigid modes, the DOF on
each side of the connection point where admittances were acquired can be described.

The weak coupling described by (4.21)–(4.23) then represents the assembly at
the interface of a virtual point having six DOFs, i.e., the coordinates β(s),β(r) that
are made equal on the interface represent the rigid body DOF of the interface. The
remainder of the interface behavior that cannot be described by the local rigid body
motion around the point will not be assembled, thereby avoiding the computation
of the high impedance related to deformation modes around the virtual point that is
usually badly captured in themeasurement and that is often not necessary to represent
the interface behavior in the frequency range considered.

The virtual point method will be explained in more details in Sect. 4.6.

Remark 3: Interface extrapolation

Often, the interface response cannot be measured directly on the interface itself, for
instance, because sensors and actuators cannot be easily installed on the true interface
but rather in its neighborhood. This is true also for the case where the interface is
to behave rigidly (see the discussion about the virtual point in Remark 2) and where
the rigid behavior of the interface is measured away from the physical interface (see
for instance Fig. 4.25).

In that case, the interface modes VΓ rs can still be used to define generalized
interface DOF β(s) and write the interface compatibility as before in (4.16). To that
effect, taking the value of the modesVΓ rs at the measurement points m (that can thus
be different from the true interface location), one can write

β(s) − β(r) = 0 β(s) = V+
Γ rs

ms
u(s) β(r) = V+

Γ rs
mr
u(r), (4.25)

whereVΓ rs
ms
andVΓ rs

mr
are the values of the global mode in the vicinity of the interface

for the measured DOFs in r and in s.
The dually weakly assembled forms of the system dynamics and of the admittance

is then written like in (4.22) and (4.23), the difference being now that the substructure
matrices Y and Z refer no longer to interface DOFs but to other measurement DOFs
in the interface vicinity and that the projection matrix T contains pseudo-inverses
for VΓ rs evaluated at the measurement points.

This technique canbe interpreted as using common interfacemodesVΓ rs to extrap-
olate measured dynamics to the interface while at the same time imposing a weak
compatibility.

4.3.5 Dual Assembly in the Modal Domain

Weakening of the interface compatibility is very useful when assembling substruc-
tures represented by three local free interface modes. Assume that the measured
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admittance Y(s) of two components can be well represented by a modal fit. Assum-
ing small damping and well-separated eigenfrequencies for each substructure, the
modal fit can be used to write the admittances as (see, for instance, Géradin and
Rixen 2015)

Y(s)(ω) = Φ(s)
(
Ω (s)2 + 2iωΩ (s)ε(s) − ω2I

)−1
Φ(s)T

, (4.26)

where Φ(s) contains in its column the identified modes of substructure s (assumed
mass normalized), and where Ω (s) and ε(s) are diagonal matrices containing the
corresponding identified eigenfrequencies and modal damping ratios.

This modal fit has the advantage that it provides a fully consistent expression of
the admittance, removing inconsistencies and noise from the measurement.

The admittances of the substructures can now easily be obtained as

Z(s)(ω) = Φ(s)−T
(
Ω (s)2 + 2iωΩ (s)ε(s) − ω2I

)
Φ(s)−1

(4.27)

so that the dually assembled form (4.2) (here discussed for the case of two substruc-
tures for simplicity) is written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . . 0
...

0 Z(s)(ω) B(s)T

. . .
...

· · · B(s) · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...

u(s)

...

λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...

f (s)

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.28)

Considering that the substructure DOF can be expressed as amodal superposition,
namely,

u(s) = Φ(s)η(s),

where η(s) are the modal coordinates in substructure s, and multiplying the local
dynamic equations in (4.28) by Φ(s)T

, the dual assembly now is written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . . 0
...

0 Z(s)
m (ω) Φ(s)T

B(s)T

. . .
...

· · · B(s)Φ(s) · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...

η(s)

...

λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...

Φ(s)T
f (s)

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.29)
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where
Z(s)

m (ω) =
(
Ω (s)2 + 2iωΩ (s)ε(s) − ω2I

)
.

This form can be interpreted as follows: the local dynamics of the substructures
are described in the modal space using the modal eigenfrequencies and dampings
identified from the measured FRFs. Since the compatibility still needs to be satisfied
by the physical DOF of the interfaces, the constraint matrices B(s) are now replaced
by B(s)Φ(s), namely, the traces of the modes on the interface.2

Themodes of the substructures are free interfacemodes and exhibit in general very
different displacements on the interface. Therefore, requiring strong compatibility
significantly limits the possible combination of modes allowed in the substructures.
Often, the number ns

φ of modes Φ(s) considered for a substructure is smaller, then

the number of physical DOF u(s)
b on its interface. In that case, the strong interface

compatibility in (4.29) will significantly limit the number of possible combination
of the local modes. In extreme cases where the number of interface compatibility
conditions nλ is higher than the number of substructures modes

∑
ns

φ , the only
possible solution satisfying the strong constraint is η(s) = 0, leading to a full looking
of the solution space.

Even if the number of modes accounted for in the substructures is high, the
motion remaining possible for the assembled system after the strong compatibility
has been satisfied is often limited. Further, one should keep in mind that the local
modes obtained by the experimental identification are free interface modes and are in
general not well suited to represent the behavior of the substructure when assembled
to its number (i.e., when the interface is not free).3

2It is interesting to note that this form of the dual assembly can deliver a model that is not only valid
in the frequency domain. Indeed, (4.29) can also be written as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

. . . 0
.
.
.

0 Ω(s)2 Φ(s)T
B(s)T

. . .
.
.
.

· · · B(s)Φ(s) · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ iω

⎡

⎢
⎢
⎢
⎢
⎢
⎣

. . . 0
.
.
.

0 2Ω(s)ε(s) 0
. . .

.

.

.

· · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

...

−ω2

⎡

⎢
⎢
⎢
⎢
⎣

. . . 0
.
.
.

0 I 0
. . .

.

.

.

· · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎣

.

.

.

η(s)

.

.

.

λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

.

.

.

Φ(s)T
f (s)

.

.

.

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

indicating that the dual assembly of the substructure modal model yield the stiffness, damping,
and mass matrix of the assembled system for the substructure modal coordinates as DOF. These
matrices can be used, for instance, to directly write the dynamic equation in the time domain.
3Later, in Sect. 4.4.3, we will discuss a technique to measure the substructure modes when the
interface is interacting with substructures in a way similar to what it will experience in the assembly.
This so-called transmission simulator technique will significantly enhance the basic modal-based
substructuring explained here.
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From the discussion above, it is clear that it is desirable to relax the compatibility
on the interface in order to allow the free interface modes of the substructures to
properly represent the local dynamics. To that effect, the compatibility relaxation
explained in the previous section can be used as follows.

Using the technique outlined in the previous section, we can weaken the interface
compatibility by replacing the Boolean matrices B by B̃ = BT, where T contains
a projection operator on interface modes. For the case of two subdomains, calling
VΓ 12

b
the representative modes in the vicinity of the interface, the weak compatibility

would then be written as

V+
Γ 12

b
Φ

(1)
b η(1) − V+

Γ 12
b

Φ
(2)
b η(2) = 0. (4.30)

In case the measurement points are not directly on the interface but in its vicinity
(see Remark 3 in the previous section), the weak compatibility conditions would be
written as

V+
Γ 12

ms
Φ(1)

ms
η(1) − V+

Γ 12
mr

Φ(2)
mr

η(2) = 0. (4.31)

The modal-based substructuring will be further explained and used in Sect. 4.4.3.

4.3.6 A Special Case: Substructures Coupled Through
Bushings

It is very common in engineering applications to couple substructures throughflexible
bushings (e.g., rubber bushings between the power train and the chassis of a car, or
isolation supports of power units installed on ships). Such connecting elements are
usually small and soft, their function being primarily to introduce a low impedance
coupling and thereby minimize vibration transmission. Hence, bushings are often
considered as connecting elements characterized by a dynamic stiffness of the form
(in the frequency domain)

Z(bush)(ω) = K(bush) − iωC(bush), (4.32)

assuming that the main contribution of the bushing in the assembly is determined
by its static stiffness and its damping, the small mass of the bushing and its internal
dynamics being neglected.

In the primal assembly setting, the dynamic equation of an assembly (see (2.39))
of two components connected by a bushing can easily be expressed as (see Fig. 4.6)

Zg =

⎡

⎢
⎢
⎢
⎢
⎣

Z(1)
i i Z(1)

ib 0 0

Z(1)
bi Z(1)

bb + Z(bush)

b1,b1 Z(bush)

b1,b2 0

0 Z(bush)

b2,b1 Z(2)
bb + Z(bush)

b2,b2 Z(2)
bi

0 0 Z(2)
bi Z(2)

i i

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

u(1)
i

ub1

ub2

u(2)
i

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

f (1)
i

fb1

fb2

f (2)
i

⎤

⎥
⎥
⎥
⎥
⎦

, (4.33)
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b1 b2

bushing
b

(1) (2)

bi i

kbush

cbush

Fig. 4.6 Assembly over a bushing element

where we assumed the numbering of the degrees of freedom of the bushing to fit the
numbering of the interfaces of the substructures it connects, and where the subscript
b and i denote boundary DOF on the interface of the bushing and internal DOF,
respectively.

In the experimental substructuring framework, considering a bushing element
can be challenging since, before being assembled in the system, it is a free floating
components and its impedance matrix is singular due to the fact that a rigid motion
(translation or rotation) can be given to the bushing without force (its inertia being
neglected):

Z(bush)R(bush) = 0, (4.34)

where R(bush) is a vector containing in its column a set of independent rigid body
modes of the bushing (usually 6).

� If we consider the example of Fig. 4.6 as a one-dimensional bushing, its
dynamic stiffness matrix would be

Z(bush) =
[

zbush −zbush

−zbush zbush

]

zbush = kbush − iωcbush

which is clearly singular. There is one rigid body mode in this case

R(bush) =
[
1
1

]

.

�

Hence, the inverse of Z(bush) does not exist, meaning that no solution can be
computed for a set of forces applied to the bushing unless those forces are self-
equilibrated (zero resulting force and moment).4

There are several ways to introduce a bushing in the general framework of LM-
FBS, as will be shortly discussed next. First, we will consider the bushing as a
connecting element between the interfaces of two substructures that introduces an
interface incompatibility, thereby slightly modifying the dual interface problem. In

4For amore detailed discussion on singularmatrices in structural dynamics, see for instanceGéradin
and Rixen (2015).
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a second approach, the bushing is treated as a substructure similar to connected
parts, and the singularity of its impedance will be handled either by applying a
regularization or by using a pseudo-inverse technique.

Bushings as Compatibility Relaxation

In this first approach, we consider the system schematically depicted in Fig. 4.6 as an
assembly of two substructures for which the interface compatibility is relaxed by the
flexibility of the bushing. In other words, the Boolean matrix defining the interface
compatibility on either side of the bushing is of the form B = [B(1) B(2)] and the
interface condition for the displacements now is written as

Bu = δ �= 0, (4.35)

where δ is the interface gap allowedby the bushing. This gap introduces in the bushing
internal forces λ proportional to the dynamic stiffness of the bushing. Calling Υ the
matrix describing the dynamic flexibility of the bushing between its interface DOF,
one can write

Bu = δ = Υ λ. (4.36)

Note thatΥ is not equal toZ(bush)−1
since it expresses theflexibility related to interface

gaps (hence in the space of λ) and not directly the flexibility between interface DOFs.

� If one considers the example depicted in Fig. 4.7 as a one-dimensional prob-
lem, one would have for this approach

B = [0 1 −1 0
]

δ = u(1)
b − u(2)

b δ = 1

kbush − iωcbush
λ,

kbush

bushing
b

(1) (2)

bi i

λ λ
cbush

Fig. 4.7 Bushings as compatibility relaxation

where kbush − iωcbush is the dynamic stiffness of the rubber between the inter-
faces. In general, this bushing stiffness can be different for different gaps defined
across an interface (for instance, in different translational or rotational direc-
tions). �

The internal forces λ in the bushing are equal in amplitude and opposite on either
side of the bushing (since the bushing has no inertia): they correspond to the Lagrange
multipliers defined in the dual assembly of structures, and the dual assembly form
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(4.2) in the presence of a bushing is now written as (here as example for a system
with two substructures):

⎡

⎣
Z(1) 0 B(1)T

0 Z(2) B(2)T

B(1) B(2) −Υ

⎤

⎦

⎡

⎣
u(1)

u(2)

λ

⎤

⎦ =
⎡

⎣
f (1)

f (2)

0

⎤

⎦ . (4.37)

So the difference compared to the usual dual assembly form consists in the fact that
the lower block diagonal term in the dual systemmatrix is no longer null but includes
the bushing stiffness Υ . From a mathematical point of view, Υ can also be seen as
a perturbation of the compatibility constraints.5

The dual assembly (4.37) can directly be written for the general case of N sub

substructures even if bushings are present only at some interfaces: for the interfaces
where no bushings are present, the corresponding entries in Υ are set to zero (i.e.,
no interface flexibility). In block matrix form, one thus generalizes (4.2) to

[
Z BT

B −Υ

] [
u
λ

]

=
[
f
0

]

. (4.38)

Using the first part of (4.38) to eliminate the substructure DOF (identical to (4.3))

u = Y(f − BT λ) (4.3)

and substituting in the second part of (4.38), one finds that dual interface problem

(BYBT + Υ )λ = BYf (4.39)

or, substructure-wise,

⎛

⎝
N sub
∑

s

B(s)Y(s)B(s)T + Υ

⎞

⎠λ =
N sub
∑

s

B(s)Y(s)f (s). (4.40)

5One can transform the form (4.37) in a primal assembled problem by eliminating λ to find

λ = Υ −1 [B(1) B(2)
]
[
u(1)

u(2)

]

([
Z(1) 0
0 Z(2)

]

+
[
B(1)T

B(2)T

]

Υ −1 [B(1) B(2)
]
) [

u(1)

u(2)

]

=
[
f (1)

f (2)

]

.

In this form, the interface flexibility can be seen as an augmentation method for the compatibility
constraints. Comparing with (4.33), one observes that the bushing dynamic stiffness matrix has a
specific form induced by the connectivity between the interfaces of the bushing and the bushing
intrinsic stiffness.
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Finally, the dually assembled admittance expressed by (4.11) in the absence of
bushing is now found to be solving the dual interface problem (4.39) for λ and
replacing in the substructure equilibrium equations:

Yg,dual =
(
Y − YBT (BYBT + Υ )−

1
BY
)

. (4.41)

Bushings as Substructures

The approach explained above considers the bushing as an interface where the com-
patibility is relaxed. Comparing the dually assembled admittance obtained by the
LM-FBS with and without bushing, we observe that the presence of bushing flex-
ibilities in (4.41) modifies the way the dual assembly is organized. If one would
like to treat the presence of bushings without changing the LM-FBS formulation,
one should apply the standard form (4.11) and consider bushings as substructures
of their own. Note that in that case the connectivity matrices are different from the
previous approach. For instance, if one considers the bushing of the simple case of
Fig. 4.6 as a third substructure,

B = [B(1) B(bush) B(2)
] =

[
0 1 −1 0 0 0
0 0 0 1 −1 0

]

u =
⎡

⎣
u(1)

u(bush)

u(2)

⎤

⎦ .

In order to apply the classical LM-FBS approach and write the assembled admit-
tance as (4.11), one needs to find a manner to write the admittance of the bushing
substructure, which is not easy since its dynamic impedance is usually singular (see
(4.34)).

A straightforward manner to build an admittance matrix for the bushing consists
in regularizing its impedance by adding virtual lumped masses to its ends, namely,

Y(bush) � (Z(bush) − ω2M(bush)
)−1

(4.42)

In order for this modification not to affect (too much) the dynamic assembly of the
assembly, three strategies can be considered:

• Choose M(bush) as a diagonal matrix with small entries. For instance, one can
choose the mass perturbation such that the local nonzero eigenfrequencies of the
bushing are 10 times higher than the highest frequency of interest for the assembly.

• Choose any M(bush) and subtract its effect by assembling an additional (vir-
tual) substructure with the corresponding negative mass, namely, with admittance
ω2M(bush) (see also the concept of decoupling in Sect. 4.4.1).

• Choose a diagonalM(bush) and remove the corresponding lumped masses from the
neighboring substructure admittances (for instance by decoupling, see Sect. 4.4.1).

Obviously, the first strategy is the easiest one and can be readily applied in practice.
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Bushings as Substructures via Pseudo-inverses

The last method to introduce a bushing in the LM-FBS consists in considering the
bushing as a substructure (as in the previous method), but instead of regularizing its
impedance by adding inertia terms like in (4.42), one can compute an admittance
matrix using a pseudo-inverse, as explained next.

The fact that Z(bush) is singular means that the substructure dynamics

Z(bush)u(bush) = f (bush) − B(bush)T
λ

has a solution only if the applied forces are self-equilibrated or, in other words, if
the applied forces have zero resulting forces and moments. Mathematically (see for
instance Géradin and Rixen 2015), this is expressed by the fact that the applied forces
must not produce any work on the rigid body modes:

R(bush)T
(
f (bush) + B(bush)T

λ
)

= 0. (4.43)

Under this condition, there exist a family of solution that can be written as

u(bush) = Y(bush)
(
f (bush) − B(bush)T

λ
)

+ R(bush)α(bush) Y(bush) = Z(bush)+ ,

(4.44)
where Z(bush)+ is a pseudo-inverse of Z(bush) that can be computed either by singular
value decomposition or, more efficiently, by a incomplete factorization (see, for
instance, Géradin and Rixen (2015) or the simple example below). The amplitudes
α(bush) of the contribution of the rigid body mode to the solution are additional
unknowns that will be determined, thanks to the self-equilibrium condition (4.43).
In other words, the overall position of the bushing needs to be such that the generated
interface forces are in global static equilibrium for the bushing.

� For the simple example of Fig. 4.6, we can compute a pseudo-inverse in the
form of

Y(bush) = Z(bush)+ =
[

zbush −zbush

−zbush zbush

]+
=
[
(kbush − iωcbush)−1 0

0 0

]

and the general solution takes the form

u(bush) =
[
(kbush − iωcbush)−1 0

0 0

] (
f (bush) − B(bush)T

λ
)

+
[
1
1

]

α(bush)

under the condition

[
1 1
] (

f (bush) − B(bush)T
λ
)

= 0.
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The general solution can be understood as the solution obtained when the bush-
ing is fixed at the right end and when an arbitrary rigid body motion is added.
Note that fixing the bushing at one end does not introduce any additional force
to the system (since all the external forces are self-equilibrated) but merely
determines one specific solution. �

The local solutions of the substructure dynamics are thus either in the general
form (4.44) for a bushing or in the regular form (4.5) for the other substructures.
This can be written in a block form similar to (4.3) as

u = Y(f − BT λ) + Rα, (4.45)

if we define the block matrix of the rigid body modes for the bushings and their
corresponding amplitudes

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0
...

R(bush1) 0
...

... R(bush2)
...

...
...

...

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

α =
⎡

⎢
⎣

α(bush1)

α(bush2)

...

⎤

⎥
⎦ . (4.46)

The dually assembled problem can now be found as before: if we consider for the
bushing the local solution (4.45) and substitute in the compatibility condition, one
finds

Bu = B
(
Y(f − BT λ) + Rα

) = 0. (4.47)

Rearranging this equation together with the self-equilibrium condition (4.43) leads
to the dual interface problem (which is an extension of the standard form (4.48)):

[
BYBT BR
RTBT 0

] [
λ

α

]

=
[
BYf
RT f

]

. (4.48)

This extended dual problem can be solved for λ and α. Substituting the solution
into the governing equation then returns the dually assembled admittance. It can
be written as an extended form of (4.11) but will not be shown in detail here (see
Mahmoudi et al. 2019 for further details and examples).

4.4 Substructure Decoupling

In the literature, two types of disassembling problems are treated. In the first type of
problem, one assumes that the overall system is made of several substructures, and
the question to be answered is to find the dynamical properties of one substructure,
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the dynamics of the rest of the structure being known. This problem will be referred
to as Substructure Decoupling.

A similar, yet different, problem arises when considering structures assembled
through bushings, i.e., structural elements that are characterized only by stiffness
and damping and having negligible mass (see Sect. 4.3.6). In this case, one knows a
priori that the forces on each side of the bushing are in equilibrium (since the internal
dynamics of the bushing are negligible) and therefore it is possible (as will be shown
later) to extract the dynamic properties of the separated bushing and substructures,
without having any pre-knowledge of the dynamics of any component. This problem
is commonly referred to as inverse substructuring in the literature.

We will first outline the basics of substructure decoupling, and then those of
inverse substructuring. In the last part, substructure decoupling will be applied in the
modal domain and the technique of transmission simulator will be outlined.

4.4.1 Theory of Decoupling

The problem of substructure decoupling has been tackled in the recent years by
several others (e.g., Ind and Ewins 2003, Sjövall 2007, Groult 2008, D’Ambrogio
2009, Voormeeren and Rixen 2009, Cloutier and Avitabile 2011, D’Ambrogio and
Fregalent 2014, D’Ambrogio and Fregolent 2015, Höller and Gibbs 2015) including
methods for simple nonlinear systems Kalaycıoğlu and Özgüven (2018), Tol and
Özgüven (2015). The presentation here is based on Voormeeren and Rixen (2012).

Let us consider a systemmade of two substructures called A and B in this section.
The coupling problem as discussed in the previous section consists of building the
dynamics of the assembly AB using the dynamics of the components, Fig. 4.8. The
substructure decoupling problem consists in finding the dynamic properties of sub-
structure B when the dynamics of the assembly AB and of component A is known,
Fig. 4.8.

This problem is often encountered in practice, for instance, when a component
cannot be disassembled to measure its FRF (an early application of the idea was used
for determining the dynamics of microsystems attached to a support in Epp et al.
2004).

The problem of decoupling can be solved by considering the interpretation
described in Fig. 4.9: if the part B in the assembly AB is excited by a force f (B)

i

in B, the response at a DOF u(B)
i in B when B would be disconnected from A can be

obtained if, in addition to the external force f (B)
i , one applies to the assembly AB the

opposite of the internal force experienced by B in the assembly AB. This interface
force can be obtained by imposing on the interface of A the same displacements as
the one experienced by the assembly and by calculating the corresponding interface
forces.

Mathematically speaking, this means that the response of the uncoupled substruc-
ture B obeying
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Fig. 4.8 The concepts of substructure coupling and decoupling

Fig. 4.9 Interpretation of the decoupling problem

ZBuB = f B (4.49)

can be computed from
ZABuAB = f AB + gAB (4.50)

or ⎡

⎢
⎣

ZAB
i A,i A

ZAB
i A,b 0

ZAB
b,i A

ZAB
b,b ZAB

b,iB

0 ZAB
iB ,b ZAB

iB ,iB

⎤

⎥
⎦

⎡

⎢
⎣

uAB
i A

uAB
b

uAB
iB

⎤

⎥
⎦ =
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⎢
⎣

0

f AB
b = f B

b

f AB
iB

= f B
i

⎤

⎥
⎦+

⎡

⎢
⎣

0

λ

0

⎤

⎥
⎦ ,
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where the subscripts i A and iB denote the internal DOFs in the A and B part of AB,
and where we assumed a special ordering of the DOFs.

The interface forcesλ that onehas to apply as external forces to AB must annihilate
the effect of the coupling on B and thus must be minus the force that AB receives
through its interface from A. The opposite of the interface force on B is the interface
force on A (actio-reactio): it can be computed as the force that A experiences when
uAB

b is imposed on it, namely (see Fig. 4.8),

λ such that ZA

[
uA

i
uA

b

]

=
[
0
λ

]

(4.51)

uA
b = uAB

b . (4.52)

Equations (4.4.1), (4.51), and (4.52) describing the dynamic of the uncoupled
substructure B can be summarized in the form

⎡
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⎢
⎢
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⎢
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ZAB 0
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⎦
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[−I 0 0
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]

0
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⎥
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⎥
⎥
⎥
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

f B
b

f B
i

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.53)

This relation shows that the dynamics of the isolated substructure B can be obtained
by “assembling” AB and A, enforcing the compatibility on the interface, but applying
the interface force in the opposite direction on AB. In case the numbering on the
interface of AB and of B are not corresponding, the generalized form of the problem
is written as ⎡

⎣
ZAB 0 BAB

0 ZA −BA

BAB BA 0

⎤

⎦

⎡

⎣
uAB

uA

λ

⎤

⎦ =
⎡

⎣
0
f B

0

⎤

⎦ , (4.54)

whereBAB andBA are the compatibility constraint matrices as used for the assembly.
This relation can be equivalently written as

⎡

⎣
ZAB 0 BAB

0 −ZA BA

BAB BA 0

⎤

⎦

⎡

⎣
uAB

uA

λ

⎤

⎦ =
⎡

⎣
0
f B

0

⎤

⎦ , (4.55)

showing that the decoupling problem is equivalent to a coupling problem with A hav-
ing a negative impedance. Hence, one can apply the formula (4.11) of the frequency-
based substructuring to find the admittance of the uncoupled system if one considers
substructure A as having a negative impedance.
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Assuming again that the numbering of the interface DOFs in AB and A are
matching, one can easily work out the impedance of B by solving (4.53), resulting
in Voormeeren and Rixen (2012)

Y(B) =
[
YB

b,b YB
b,i

YB
i,b YB

i,i

]

=
[
YAB

b,b YAB
b,iB

YAB
iB ,b YAB

ib,iB

]

−
[
YAB

b,b

YAB
iB ,b

]
(
YAB

b,b − YA
b,b

)−1 [
YAB

b,b YAB
b,iB

]
.

(4.56)
Remark 1: Post-processing of decoupled dynamics

Note that, due to the errors inherent to the fact that the method is based on measure-
ment data, the FRFs of the uncoupled system B are usually not fully accurate and
might exhibit nonphysical properties such as non-passivity or negative mass. Several
authors have proposed different cures to improve the FRFs obtained by decoupling
Carne and Dohrmann (2006), Mayes and Ross (2012). Other techniques to enhance
the consistency of the FRFs in state space are discussed in Sect. 4.9.2.

Remark 2: Decoupling with overdetermined compatibilities

The decoupling method formalized in (4.55), exactly like for substructure coupling,
is very sensitive to small errors in the interface admittances of the components and,
therefore, it is desirable to weaken the interface compatibility using one of the tech-
niques described in Sect. 4.3.4.

However, for decoupling, there is an additional manner to relax the strong com-
patibility (4.52) required between the assembly AB and the substructure A to be
removed. Indeed, instead of requiring that λ applied to AB should be such that only
the interface DOFs of A and AB are equal (see (4.52)), one could require that all
DOFs measured in A and those measured in the part A of AB should be equal when
they experience the same λ on the interface.

[
uA

b

uA
i

]

=
[
uAB

b
uAB

iB

]

. (4.57)

Requiring that also the DOFs inside A must be identical in A and AB is, in theory,
unnecessary since if all interface DOFs in AB and A are identical, the internal ones
will automatically be identical. However, in practice, measurements are not perfect
and thus the data used for YA might not be fully consistent with the information
about A contained in AB. Hence, requiring also explicitly the compatibility inside
A helps mitigating inaccuracies when computing the interface forces λ.

With the extended compatibility requirement (4.57), the decoupling problem
(4.58) is written as
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⎡
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. (4.58)

Note that, although compatibility is required for all DOFs of A, only interface forces
λ are considered. Therefore, the interface problem will be overdetermined and will
be solved using a pseudo-inverse, meaning that one computes the interface forces
that guarantees the best compatibility for all DOFs on A in a least square sense.
The admittance of B, given by (4.56) for the basic decoupling form, now becomes
Voormeeren and Rixen (2012)

Y(B) =
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YB

b,b YB
b,i

YB
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b,b YAB

b,iB

]

.

(4.59)
In that way, inaccuracies in YAB and YA will be mitigated. This idea was already
proposed in Sjövall (2006), although in a different form.

Here, only one variant of the different possibilities to impose compatibility and
equilibrium for a decoupling problem was outlined. Other approaches modifying the
basic decoupling form (4.55) are discussed in Voormeeren and Rixen (2012), where
also application on an analytical example and on a hardware example can be found.

Remark 3: Transmission simulator and interface substitute

The substructure decoupling technique is very useful also when applying the FBS
methods to assemble measured components. Indeed, the results obtained from the
FBS techniques are significantly improved when the components are not measured
with free boundary conditions on the interface, but when the measurement is per-
formed with a so-called transmission simulator introduced in Allen et al. (2010);
Mayes andArviso (2010),Mayes andRoss (2012) for themodal domain coupling (see
Sect. 4.4.3). The methodology is also sometimes called interface substitute van der
Seijs (2013)when used in the physical domain. The idea is illustrated in Fig. 4.10. The
coupling substitute must be removed from the assembled system using a decoupling
method as discussed in this section, assuming that the substitute is a well-defined
system for which a very good (numerical or measured) model exists.

Such a procedure seems useless since in theory adding a coupling substitute to
obtain the component dynamics, then removing it in the assembly does not affect
the final result. In practice, however, this can make a very significant difference and
dramatically improve the accuracy of the assembled system obtained by FBS, the
two main reasons being the following:

• the dynamics of the component measuredwith a substitute on its interface exhibits,
during the component measurement, dynamics that are similar to the dynamics it
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Fig. 4.10 The idea of the transmission simulator (coupling substitute) van der Seijs (2013)

will exhibit in the assembly later. Therefore, when inverting the interface flexibility
to compute the assembled dynamics (see 4.11), the local admittance has much
better accuracy for the problem to be solved.

• the model of the component, when the substitute has been decoupled, contains
in practice not only the dynamics of the isolated component but includes also
the dynamics of the interface as it was present in the assembly with the substitute.
Hence, this interface dynamics (stiffness and damping) will also be included in the
model of the final assembly. This is essential, for instance, for assemblies where
a significant part of the damping comes from joints.

In practice, the substitute should be designed such that it exercises the interface of
the component in a manner similar to what the component will experience in the
real assembly, i.e., the substitute should have similar dynamics as the components
connected in the final assembly and it should be attached through the same physical
connections (e.g., bolted, riveted..).

4.4.2 Inverse Substructuring

The inverse substructuring technique can be applied to problems where components
are assembled through bushings (see Sect. 4.3.6) and when one assumes that the
bushings have no significant inertia. The method then allows to find the admittances
of the bushings and of the individual components, based only on the admittances
measuredon the assembly (hence, contrary to the substructure decoupling techniques,
not requiring any pre-knowledge of the dynamics of any of the substructures).

The inverse substructuring techniques were developed several years ago and the
formulation improved over the years (see, for instance, Zhen et al. 2004, Zhen et al.
2004, Wang and Wang 2011, Wang et al. 2018). Many of those publications are
rather difficult to follow due to the cumbersome algebraic developments and the
ad hoc approach of the problem. A more structured manner to derive the equations
was proposed in Keersmaekers et al. (2015). Recently, the inverse substructuring
technique was written in a very clear and intuitive way Moorhouse et al. (2013);
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Meggitt et al. (2015), Meggitt et al. (2018), Meggitt and Moorhouse (2018). We
shortly outline the method based on the approach of those latter publications.

Referring to the schematic representation of Fig. 4.6, let us consider the primal
form (4.33) of the dynamic problem where two substructures (called 1 and 2) are
connected by a bushing, recalled here for convenience:

Z(1+bush+2)u(1+bush+2) =

⎡
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(4.60)
If a substructure decoupling approach as explained in Sect. 4.4.2 would be used,
one would consider the bushings as a third component, measure Y(1+bush+2) and the
admittancesY(1) andY(2). Then one would decouple the admittances of substructure
1 and 2 by assembling to Y(1+bush+3) the negative admittances −Y(1) and −Y(2).

In the inverse substructuring, only the measurement of the admittanceY(1+bush+2)

of the assembly is used and inverted to obtain

Z(1+bush+2) = (Y(1+bush+2)
)−1

. (4.61)

Inverse substructuring then uses the fact that the off-diagonal terms in the measured
impedance (4.61) (comparing with the theoretical form (4.60)) are properties of the
bushing alone, namely,

Z(1+bush+2)
b1,b2 = Z(bush)

b1,b2 . (4.62)

Let us assume now that the DOFs at the two sides of the bushing are connected
with the topology shown in Fig. 4.11, i.e., each DOF on one side of the interface is
only coupled to one DOF on the other side and there are no cross couplings with any
other DOF. Additionally, it is assumed that the joint element (i.e., the rubber) has
negligible mass. If these assumptions hold, then the stiffness matrix of the rubber
isolator has the following properties:

Fig. 4.11 Schematic
representation of the inverse
substructuring assumption
for a bushing

q1,x q1,y q1,z q1,θx
q1,θy

q1,θz

q2,x q2,y q2,z q2,θx
q2,θy

q2,θz
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Z(bush)

b1,b1 = Z(bush)

b2,b2 = −Z(bush)

b1,b2 = −Z(bush)

b2,b1 , (4.63)

where Z(bush)

b1,b1 is actually a diagonal matrix. Thus, by simply inverting the measured
FRFmatrix of the assembly, the whole rubber isolator can be identified from just tak-
ing the off-diagonal blocks of the matrix (provided that the above-stated assumptions
hold). Hence, the name “inverse substructuring”. In this case, it is straightforward
to derive the dynamic stiffnesses of the two separate substructures 1 and 2 from the
measurements:
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. (4.64)

This comeswith the great practical advantage that it is not necessary to knowanything
about the dynamic properties of the two structures A and B which are joint by
the isolator. Thus, one is able to identify the dynamic properties of all involved
substructures 1, 2 and the bushing separately from only one set of measurements
performed on the assembly.

� Application to the identification of a rubber bushing
To illustrate the inverse substructuring and the substructure decoupling tech-
niques, we summarize the results obtained for a rubber bushing as reported in
Haeussler et al. (2018). In that work, the dynamic stiffness of the rubber bushing
depicted in Fig. 4.12 is looked for.

(a)

q1,m1

q2,m2

(b)

q1,m1

q2,m2

(c)

1

2

Bush

Fig. 4.12 Test and identification of a rubber bushing Haeussler et al. (2018)

The idea is to attach two well-defined and modeled rigid crosses on each side
of the rubber and consider them as substructures 1 and 2 connected by the
bushing. The crosses can be considered as very rigid for the frequency range
considered and, since the masses and inertias of the crosses are accurately
known (from a CAD model), their admittances are accurately known so that
the substructure decoupling techniques can be applied (using the rigid body
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behavior of the crosses to define virtual points and assemble the model of the
system, see Sect. 4.6). The results obtained from the substructure decoupling
method for the dynamic properties of the bushing are then compared to the ones
obtained by applying the inverse substructuring technique.
The experiment is further described in Fig. 4.12 which shows (a) the actual
measurement setup of the assembly: rubber isolator between upper and lower
fixture hung up with rubber bands, (b) the schematics of the free-free measure-
ment of bushing between fixtures 1 and 2, and (c) the substructure of the rubber
isolator which is to be determined. The DOFs q1 and q2 represent the rigid
body DOF on the top and bottom of the rubber isolator, respectively, m1 and
m2, containing the translational and rotational resulting forces on each side.
The results of the substructure decoupling and inverse decoupling are illustrated
in Fig. 4.13. It shows the impedance values obtained for the axial DOF of the
rubber. One clearly sees that bothmethods give very similar results up to 100Hz,
but differ significantly for higher frequencies. In fact, the substructure decou-
pling yields the dynamic properties of the rubber including the bolts attached to
its ends (see Fig. 4.12c), whereas the inverse substructuring approach assumes
that the entire bushing is massless (Fig. 4.13).

101 102 103

D
yn

am
ic
St
iff
ne
ss

[N
/m

]

Decoupling ZI
11

Decoupling ZI
22

Inv. Substr. ZI
21

Inv. Substr. ZI
12

101 102 103
−180

−90

0

90

180

Frequency [Hz]

A
ng

le
[◦
]

Z(bush)
b1 ,b1

Z(bush)
b2,b2

Z(bush)
b1 ,b1

Z(bush)
b2,b2

Fig. 4.13 Example of results from testing a rubber bushing Haeussler et al. (2018)
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4.4.3 The Transmission Simulator Method for
Substructuring and Substructure Decoupling

(The material in this section was taken from Paper 161 at the 2012 IMAC.)

Themodal constraint for fixture and subsystem (MCFS)methodwas introduced at
IMAC in 2007 for the component mode synthesis approach Allen and Mayes (2007)
and the frequency-based substructuring approachMayes andStasiunas (2007). It uses
a fixture in the experimental dynamic substructure called the transmission simulator,
so is also called the transmission simulator method. An analytical model of the
transmission simulator is generally required with this method (or a very accurate
modal model).

Physically, the transmission simulator ismounted to the experimental substructure
with exactly the same joint geometry and material as that to which the experimental
substructure will ultimately be connected. Because of this, the resulting experimental
substructure inherently includes the linearized stiffness and damping in the joint,
which classical methods neglect, to their peril. The fixture is also designed to provide
accessible locations to mount response sensors and to apply input forces. Often
the actual connection points are poor locations to mount sensors. For example, the
connection point may be at a bolt or a threaded screw interface. Special features can
also be included to provide good driving point measurements, which are extremely
important to obtain accurate modal mass for scaling the mode shapes.

The analytical model of the transmission simulator is used in multiple ways. It is
generally mounted with an assumed welded connection to the analytical substructure
(often a finite element model) to which the experimental substructure is to be con-
nected. By constraining the transmission simulator on the experimental substructure
to have the same motion as the transmission simulator on the analytical substructure,
the systems are joined. Then themass and stiffness of the analytical and experimental
transmission simulators are subtracted from the assembled system. The analytical
model of the transmission simulator can also be thought of as an aid to interpolate
from the measurement sensor locations back to the actual connection degrees of
freedom (DOFs). A truncated set of the mode shapes of the transmission simulator is
used that spans the frequency bandwidth of interest. The sensor set can be chosen to
provide a set of sensor locations for which all chosen transmission shapes are linearly
independent. These sensors can all be translational—no rotations are required. The
rotations at the connection points are inherently carried out in the modal coordinates
of the transmission simulator. The connections can actually be continuous, not just
discrete, as long as the transmission simulator mode shape set spans the space of the
connection motion reasonably well. In addition, the transmission of simulator mass
stresses the joint. This stress across the joint provides a much better Ritz vector shape
basis than simple free modes where there is no stress at the joint. It provides enough
improvement in the basis vectors that residuals, which are difficult to measure, do
not need to be added to the basis set.

Although this method requires fabrication of a fixture and generation of its asso-
ciated analytical model, it provides extensive benefits for the investment. One does
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not have to measure exactly at the connection points. One does not have to measure
rotations because they are inherently included in the analytical model modal coor-
dinates (so they are not just being neglected). The stiffness and damping of the joint
are inherently included. No residual measurements are required.

One problem that can result in this method is that themassmatrix can be indefinite
when the transmission simulator is subtracted. However, methods to correct the mass
matrix have been developed recently Mayes et al. (2012). This has cleared the way
so that in practice, refinements can be made without theoretical roadblocks.

An example from Mayes et al. (2012) shows conceptually how the method was
implemented for one actual hardware case in Fig. 4.14. The transmission simulator
hardware, which is a ring with tabs, is mounted to the experimental substructure with
eight bolts, just as it will be attached in the real system to the cylinder substructure,
so it contains the joint. An analytical model of the transmission simulator is welded
into the flange of the cylinder analytical model. The transmission simulator and the
cylinder flange actually occupy the same space, which can be done with an analytical
model. Then transmission simulators for each substructure are forced to have the same
motion, which connects them. Finally, the stiffness and mass of the two transmission
simulators are analytically subtracted.

The free-free experimental modal test setup is shown in Fig. 4.14 with 12 triaxial
accels on the transmission simulator and 2 triaxial accels at points of interest on the
beam. Twenty-five rigid body and elastic modes were extracted out to 4 kHz. This
structure had eight discrete bolted attachments, which would require 48 discrete
constraints for the three rotations and three translations at each connection. Twelve

Fig. 4.14 Coupling of experimental substructure C with analytical substructure D to generate full
system E after transmission simulators (Aan1 and Aan2) are subtracted. Reproduced from Allen
et al. (2010)
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Fig. 4.15 Experimental substructure free modal test setup with 36 sensors on the transmission
simulator ring and a few sensors at points of interest on the substructure. Reproduced from Allen
et al. (2010)

triaxial accelerometers were placed on the TS, as shown in Fig. 4.14 none of which
were at the eight connection points. The sensor locations are shown in Allen et al.
(2010). Then, 18 modes of the transmission simulator analytical model were used
to span the connection space motion, using 36 measurement points to describe the
mode shapes. The method thus reduces the number of constraints down from the
classic 48 connections to 18. The 18 modes covered a frequency bandwidth of 2 kHz
(Fig. 4.15).

Component Mode Synthesis Theory Using Primal Formulation In A General-
ized Framework

Following the notation outlined previously and in Klerk et al. (2008), and assuming
that each substructure has been approximated with a reduced model, whether experi-
mental or analytical, the displacements are approximated with the modal substitution
as

u ∼= Rη, (4.65)

where u is the vector of physical displacements, η is the vector of generalized coor-
dinates from a modal test or eigenvector analysis, and R is the truncated mode shape
matrix relating the generalized coordinates to the physical coordinates. Then, the
equations of motion for the substructure can be written as

M(s)Rη̈(s) + C(s)Rη̇(s) + K(s)Rη(s) = f (s) + g(s) + r(s), (4.66)
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where M, C, and K are mass stiffness and damping matrices, the superscript (s)
denotes the particular substructure, f (s) denotes the external forces applied to the
substructure, g(s) represents the equilibrium joining forces from another substruc-
ture that will be applied to the substructure, and r(s) is the residual force due to the
mismatch caused by the approximation of the displacements in Eq. (4.65). Premul-
tiplying by RT yields

RTM(s)Rη̈(s) + RTC(s)Rη̇(s) + RTK(s)Rη(s) = RT f (s) + RT g(s) + RT r(s).

(4.67)
It can be shown that, because of orthogonality of the mode shapes with respect to
M, C, and K,

RT r(s) = 0, (4.68)

which leaves

RTM(s)Rη̈(s) + RTC(s)Rη̇(s) + RTK(s)Rη(s) = RT f (s) + RT g(s), (4.69)

or in a renamed form

M(s)
m η̈(s) + C(s)

m η̇(s) + K(s)
m η(s) = f (s)

m + g(s)
m , (4.70)

where subscript m denotes modal quantities. The matrices are, if the mode shapes
are mass normalized,

M(s)
m = RTM(s)R = I

C(s)
m = RTC(s)R = [\2ζrωr \

]

K(s)
m = RTK(s)R = [\ω2

r \
]

f (s)
m = RT f (s)

g(s)
m = RT g(s).

(4.71)

At this point, let us concatenate the various substructures together in the uncoupled
form as

Mm η̈ + Cm η̇ + Kmη = fm + gm . (4.72)

Compatibility is now enforced with a constraint equation from

Buc = 0, (4.73)

where B is a Boolean matrix of ones, zeros, and negative ones, and for convenience
we will include only connection DOF in the displacement vector. Take the partition
of Eq. (4.65) for only the connection DOF and again make the modal substitution

BRcη ∼= 0, (4.74)

where the subscript c indicates taking only the partition of R necessary for the
connection DOF.
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Up to this point, we have followed the generalized framework rather strictly, but
at this point, the transmission simulator method affects the rest of the development.
It is assumed that there is an analytical model of the transmission simulator; one uses
a truncated set of its mode shapes, Ψ c, as a basis to span the space of the connection
motion for each substructure. Now we use the pseudo-inverse (denoted with a super-
script +) to project the constraint on the space of the transmission simulator vector
space by premultiplying both sides by the block diagonal pseudo-inverse as

Ψ B D+
c BRcη ∼= Ψ B D+

c 0, (4.75)

where

Ψ B D+
c =

⎡

⎣
Ψ +

c 0 0
0 ... 0
0 0 Ψ +

c

⎤

⎦ (4.76)

will have as many block rows as there are substructures. The right-hand side of
Eq. (4.75) is still a vector of zeros, although the number of constraints (rows) is
reduced since the matrix Ψ c is selected so that it always has more DOF than modes.
The final constraint is

B̃η = 0, (4.77)

where
B̃ = Ψ B D+

c BRc. (4.78)

There are multiple reasons for premultiplying by Ψ B D+
c . First, it softens the con-

straint (reduces the number of constraints). The advantage of this is that it gives a least
squares fit through the measured motions of the transmission simulator at the DOF to
which the constraints will be applied. The mode shapes of the transmission simulator
provide a smoothing effect through the measured motions, which always have exper-
imental error. The modifiedmatrix greatly improves the conditioning of the problem.
Also, one does not HAVE to use motions measured directly at the attachment points
and also does not HAVE to measure rotations, which are inherently carried along in
the generalized DOF of the transmission simulator. The generalized modal DOF of
the transmission simulator is γ in the following

Ψ cγ ∼= R(s)
c η(s), (4.79)

but can be expressed as
γ ∼= Ψ +

c R
(s)
c η(s), (4.80)

which can be seen in the left-hand side of Eq. (4.75) as converting the constraint to
the transmission simulator modal coordinates.

Now continue the development in the general framework from Eq. (4.77). We
perform another modal-like substitution with
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η = L̃q. (4.81)

Substitute Eq. (4.81) into Eq. (4.77) to give

B̃L̃q = 0. (4.82)

If one chooses L̃ such that it is in the null space of B̃, then Eq. (4.82) is guaranteed
to be satisfied because

B̃L̃ = 0. (4.83)

All the rows of B̃ are orthogonal to all the columns of L̃. Since B̃ is known, a one
line command in MATLAB can provide L̃. Substituting Eq. (4.81) back into the
uncoupled equations of motion in Eq. (4.72) and premultiplying by L̃T gives

L̃TMmL̃q̈ + L̃TCmL̃q̇ + L̃TKmL̃q = L̃T fm + L̃T gm, (4.84)

which couples the equations of motion, reducing the number of rows in Eq. (4.72)
by the number of constraints (rows) in Eq. (4.77). This leads to the primal coupling
formulation in this framework. In this formulation, L̃T gm = L̃TRT g = 0, since the
rows of L̃T are orthogonal to a linear combination of the columns of RT , leaving

M̃m q̈ + C̃m q̇ + K̃mq = f̃m, (4.85)

where
M̃m = L̃TMmL̃
C̃m = L̃TCmL̃
K̃m = L̃TKmL̃
f̃m = L̃T fm

. (4.86)

Frequency-Based Substructuring Dual Formulation In The General Frame-
work

Again following Klerk et al. (2008), for the physical DOF, the uncoupled equations
of motion, the compatibility and the equilibrium are written as

Mü + Cu̇ + Ku = f + g (4.87)

Bu = 0 (4.88)

LT g = 0, (4.89)

where M, C, and K are block diagonals with as many blocks as substructures. The
constraint forces g between the substructures can be written as

g = −BT λ (4.90)
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where λ are Lagrange multipliers corresponding physically to the interface forces.
Equations (4.87) and (4.88) can now be written in matrix form as

[
M 0
0 0

] [
ü
λ

]

+
[
C 0
0 0

] [
u̇
λ

]

+
[
K BT

B 0

] [
u
λ

]

=
[
f
0

]

. (4.91)

Taking the Fourier transform to bring this into the frequency domain, where each
quantity is now a function of frequency, gives

[
Z BT

B 0

] [
ū
λ̄

]

=
[
f̄
0

]

, (4.92)

where Z is the block diagonal impedance matrix resulting from the mass, stiffness,
and damping. The frequency response function matrix, H, which is often measured
experimentally is the inverse of Z. The dual formulation coupled formulation in
terms of H is derived from Eq. (4.92) by eliminating λ̄, yielding

ū = Hf̄ − HBT (BHBT )−1BHf̄ . (4.93)

The transmission simulator method modifies the B matrix in Eq. (4.88) as

Ψ B D+Bū ∼= 0 (4.94)

So one has
B̂ū = 0, (4.95)

where
B̂ = Ψ B D+B. (4.96)

Now simply substitute Eq. (4.96) into Eq. (4.93) to give the frequency-based trans-
mission simulator equation as

ū = Hf̄ − HB̂T (B̂HB̂T )−1B̂Hf̄ . (4.97)

The B̂matrix transforms the physical connection DOF frequency response functions
(FRFs) into generalized DOF FRFs cast on the space of the transmission simulator
mode shapes. This collapses the size of the physical connection DOF FRFs down
to the size of the number of modes of the transmission simulator, providing some
least squares smoothing, and makes the matrix inversion in Eq. (4.97) much better
conditioned.

� Example Combining Experimental Plate-Beam Substructure with Analytical
Cylinder Substructure Using the CMS approach

The example is based on the hardware and analytical finite element models
depicted in the first three figures. In the equations below, the finite element (FE)
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substructure is considered to have the analytical model of the transmission sim-
ulator attached, and the experimental (EXP) substructure has the physical trans-
mission simulator attached. Two transmission simulators must be subtracted. In
this example, 100 modes were utilized from the finite element substructure, 25
modes from the experimental substructure, and 18modes from the transmission
simulator giving 143 uncoupled equations of motion. Consider only the eigen-
value equations of motion, and then the final coupled modal parameters can
be used to analytically form any desired full system response FRF. Damping
will be predicted in a simplifiedmethod later. The undamped frequency-domain
equations of motion using modal coordinates when forces are removed are

⎡

⎢
⎣

ω2
F E 0 0

0 ω2
E X P 0

0 0 −2ω2
T S

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ηF E

ηE X P

ηT S

⎫
⎪⎬

⎪⎭
− ω2

⎡

⎢
⎣

IF E 0 0

0 IE X P 0

0 0 −2IT S

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

η̈F E

η̈E X P

η̈T S

⎫
⎪⎬

⎪⎭
= 0

(4.98)
and the physical displacements, y, on each substructure are

⎧
⎪⎨

⎪⎩

yF E

yE X P

yT S

⎫
⎪⎬

⎪⎭
=
⎡

⎢
⎣

RF E 0 0

0 RE X P 0

0 0 RT S

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ηF E

ηE X P

ηT S,

⎫
⎪⎬

⎪⎭
(4.99)

where R are a truncated set of the mass normalized mode shapes of each sub-
structure coming from experiment or analysis. The motion of the transmission
simulator in all three substructures should be the samewhen all the substructures
are coupled, so two sets of physical constraints can be written

yF Emeas = yE X Pmeas and yE X Pmeas = yT Smeas . (4.100)

Just consider the first of these constraints, invoke themodal substitution from
Eq. (4.99), and premultiply by the pseudo-inverse of transmission simulator
mode shapes, R+

T Sto give

R+
T SRF EmeasηF E = R+

T SRE X PmeasηE X P . (4.101)

Or moving everything to the left-hand side gives

R+
T SRF EmeasηF E − R+

T SRE X PmeasηE X P = 0. (4.102)

A similar process can be applied to the second constraint of Eq. (4.100). The
constraints can now be written in the form given in Eqs. (4.76)–(4.78) as
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[
R+

T S 0

0 R+
T S

][
I −I 0

0 I −I

]
⎡

⎢
⎣

RF Emeas 0 0

0 RE X Pmeas 0

0 0 RT S

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ηF E

ηE X P

ηT S

⎫
⎪⎬

⎪⎭
=
{

0

0,

}

(4.103)
where Ψ B D+

c in Eq. (4.75) is RB D+
c and B is the Boolean matrix here, thus

B̃ =
[
R+

T S 0

0 R+
T S

][
I −I 0
0 I −I

]
⎡

⎢
⎣

RF Emeas 0 0

0 RE X Pmeas 0

0 0 RT S

⎤

⎥
⎦ . (4.104)

Repeating Eq. (4.81) and (4.82) here for clarity gives

η = L̃q (4.81)

and
B̃L̃q = 0 (4.82)

and L̃ is the null space of B̃, which is known. Substitute Eq. (4.81) into Eq. (4.98)
and premultiply by L̃T to give

LT

⎡

⎢
⎣

ω2
F E 0 0

0 ω2
E X P 0

0 0 −2ω2
T S

⎤

⎥
⎦Lq − ω2LT

⎡

⎢
⎣

IF E 0 0

0 IE X P 0

0 0 −2IT S

⎤

⎥
⎦Lq̈ = 0,

(4.105)
providing the coupled equations from which the eigenvalue problem can be
solved yielding. The solution will provide a set of eigenvectors,Φ, frequencies,
ω2, and modal coordinates, β. Now the coupled displacements will be

y = RLΦβ. (4.106)

The resulting new damping matrix is formed by

ΦTLT

⎡

⎢
⎣

2ζ F EωF E 0 0

0 2ζ E X PωE X P 0

0 0 −4ζ T SωT S

⎤

⎥
⎦LΦ, (4.107)

fromwhichweusually just take thediagonal values to give2ζnewωnew (Fig. 4.16).
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Fig. 4.16 Transmission simulator method FRF of coupled system (red) versus truth model
(blue)—Driving point response at tip of beam in Fig. 4.14

In Fig. 4.16, one can see the axial FRF at the tip of the beam (see Fig. 4.14).
The red FRF was constructed from the modal parameters of the coupled sys-
tem mode shapes, frequencies, and damping using the transmission simulator
method with the CMS approach. The blue FRF represents the truth data con-
structed from the modal parameters of a highly validated finite element model
of the full system. �

� Example Combining Experimental Plate/Beam Substructure with Analytical
Cylinder Substructure Using the FBS approach

Generally, the author does not execute Eq. (4.97) in a single step, since it
makes the matrices very large and the resulting inversions are computationally
too intensive. For this example, assume we have one step where systems C and
D in the figure are too be joined. (Another step can be taken to subtract the
transmission simulators, which will not be done here). Define HC and HD as
the frequency response function matrices for substructures C and D, respec-
tively.HT is the FRF matrix of the total system after C and D are coupled. Each
substructure has a two-dimensional FRF matrix for every frequency line of the
FRFs. The first subscript on any of thesematrices represents the output response
DOF and the second subscript represents the input force DOF. Perhaps, the two
most useful equations from partitions of the classical method in Eq. (4.93) are
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HTri = HDrc (HDcc + HCcc)
−1 HCci , (4.108)

where the force input is on substructure C and the response output is on sub-
structure D, and

HTri = HCri − HCrc (HDcc + HCcc)
−1 HCci , (4.109)

where the force input is on substructure C and the response output is also
on substructure C. Here, the subscript r represents the output response and
the subscript i represents the input force, and the subscript c represents the
connectionDOFbetween the two substructures.With the transmission simulator
method, the Boolean matrix B is replaced with B̂ to convert all the connection
DOF to modal DOF of the transmission simulator in Eq. (4.97), so that

HDrc = HDrpRT +
T S (4.110)

HDcc = R+
T SHDppRT +

T S (4.111)

HCcc = R+
T SHCppRT +

T S (4.112)

HCci = R+
T SHCpi (4.113)

HCrc = HCrpRT +
T S (4.114)

in Eqs. (4.113)–(4.114), the subscript p represents the DOF at the transmission
simulator measurement locations on either substructure. The pseudo-inverse of
the mode shape matrix RT S of the transmission simulator reduces the size of
the physical measurement FRF matrices down to the number of modes kept for
the transmission simulator at all the connection DOFs. �

4.5 Measurement Methods for Substructuring

Whendeveloping experimental substructures, themeasurements can “make or break”
the experimental model. The requirements for the measurements are much more
exacting than those for a modal test being used for model validation for which mode
shapes may be acceptable with a bias error in the modal scaling. In the case of
substructuring, such errors have a more dramatic effect when coupled to another
structure. The FRF measurement importance can be appreciated when one considers
FBS with FRFs. Basically, at any frequency line, one is coming up with a weighted
sum of the substructure FRFs. Two great principles for the case of real modes arise
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from this. If a frequency line is supposed to have a resonant response in the coupled
system, then the real part of the coupled FRF has to go to zero, and the imaginary
part of the FRF will be a drastic amplification (on the order of the quality of the
resonance, Q = 1/(2 ∗ ζ )). Restating this, if one is to get the coupled natural fre-
quency correctly, the real part of the connection FRFs must be accurate. If one is to
get the coupled amplitude of the resonant FRF correctly, the imaginary part of all the
FRFs of concern must be accurate. Consider the real part of a FRF obtained from an
impact test. On first consideration in the left figure below, it look good. Let us assume
that when the substructures are coupled, the first resonance will drop down to about
100Hz.When one zooms in on the real part between 0 and 300Hz, one sees that there
is a significant amount of uncertainty in the real part of the FRF. This could affect
the substructured FRF so that it crosses zero at the wrong place, or even multiple
places, yielding the resonant response at wrong frequencies (Figs. 4.17 and 4.18).

Consider the imaginary portion of the drive point FRF below. The response at left
looks good. However, if a new mode is destined for the region just above 3000Hz,
look at the zoomed response in that bandwidth on the right. In theory, a drive point
FRF should never have an imaginary part less than zero. Clearly, there are many
frequencies with response below zero. This could not only give inaccurate estimate

Fig. 4.17 Sample FRF showing contamination of the real parts

Fig. 4.18 Sample FRF showing contamination of the imaginary parts
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of the amplitude of the imaginary portion of the FRF, but even the wrong sign! For
this reason, structures with higher damping are typically easier to perform FBS than
lightly damped structures as shown here.

1. Response Sensor Measurement Errors and their Sources
Here is a list of common sources of measurement error, approximately ranked for
probability of occurrence. Also included are some recommendations for correct-
ing these.

a. Bookkeeping errors
(Wrong sign, wrong DOF, crossed wires, wrong sensitivity/gain, local coor-
dinate system errors) Administrative double checks by multiple people on
the mounting, channel table, label checks, and coordinate system definitions
can help eliminate these. For “free” configuration tests, a great engineer-
ing check to identify such errors is to compare the low-frequency real part
response of each FRF with the analytical response for that DOF using just
the rigid body modes. Usually, they will be within about 10% of each other.

b. Choosing too wide a bandwidth
In general, the difficulty of developing an accurate experimental model
increases with frequency. Minimize the bandwidth as much as possible to
meet the requirement. Push back when customers ask for “the moon.”

c. Undetected overloads, especially in drive point sensors
Undetected overloads where the sensor response, amplifier response, or the
band edge of theDAQhardware is beyond, the rated range can ruin or pollute
the data, but the digital anti-aliasing filter can disguise it so that it looks
“fine”. Set the DAQ and filter bandwidths wide open, and collect at-level
data in the time domain to verify that the sensors or signal conditioning
equipment is not being driven beyond its rated voltage range (a typical
integrated electronics sensor maximum is 5 volts)

d. Cross-axis sensitivity
In very lightly damped systems, the out-of-axis response to a strong res-
onance will have a peak in the real part and the imaginary part will cross
zero, out of phase with a normal acceleration response. This is not easily
corrected.

e. Base strain sensitivity
Base strain sensitivity allows strain in the surface of the structure towhich the
accelerometer ismounted to produce false acceleration voltage output. It can
sometimes be observed as a large uncharacteristic low-frequency response
sloping downward as frequency increases. This can be remedied by putting
the accelerometer on a block, or (less preferably) on tape with an adhesive
layer.

f. Mounting or mounting block resonances
At some high frequency, tape-mounted accelerometers will see phase shift
from the true response and block-mounted accelerometers will have a mode
of the block mass oscillating locally on the structure. If possible, testing an
accelerometer mounted without tape and comparing the FRF mounted on



www.manaraa.com

124 4 Experimental Substructuring

the tape will provide observation of this error. Mounting block resonances
will change frequency if the size of the mounting block is changed. Beware
of mounting accelerometers on a screw head or a nut as one may measure
the fastener response instead of the desired structure response.

g. Sensors with wrong amplitude sensitivity or broken sensors
Sensors that are not responding can often be diagnosed by observing their
time- or frequency-domain response, especially in relation to the noise floor
with no stimulus applied. Sensors that have wrong sensitivity, for example,
from a cracked crystal that is still partially functional, are difficult to identify
by simple observation of the response. The check in the Bookkeeping errors
section above is of value here for free systems. Another similar check for
free systems is to excite the structure at a low frequency below the elastic
modes in each rigid body direction and extract the real part of the FRF at
that frequency as a shape. The shape should be an appropriate rigid body
response shape.

2. The Most Critical Sensor Locations for Substructuring
By far the most critical sensors for experimental substructures are the connection
DOF sensors. Those are the ones used in computing inverses or pseudo-inverses
and ultimately determine the coupled modal frequencies as well as having large
bearing on the amplitude of the coupled responses.

a. Drive point sensors are the most critical
In FBS, all the connected DOFs require drive point responses. In CMS sub-
structuring, the drive point FRFs determine the scaling of the mode shapes,
so they are very important. A low-frequency check of each connection DOF
response as previously mentioned above in bookkeeping errors is a great
first check of these FRFs for free substructures. If one performs the sub-
structuring and the rigid body modes are appropriately coupled, one should
obtain the correct coupled low-frequency response. There is no approxima-
tionwith coupling of rigid bodymodes andno singularities ifmass properties
are appropriate, so this should always work. As mentioned before, if there
are errors in this coupling, it may help identify bookkeeping or some other
error in the setup.

b. Neglect connection DOF (including rotations) to your peril
As previously mentioned, 3/4 of the FRFmatrices contain rotation terms. In
many cases, rotations cannot be neglected without significant degradation of
the results. Approximation of the connection DOF is better than elimination.
The transmission simulator method inherently includes rotation estimates.
The virtual point transformation is another approach to include the estimate
of rotations.

c. For CMS substructuring check synthesized FRFs against measured
data for each substucture
Once the measured FRFs are obtained, the modal parameters must be
extracted for CMS substructuring. Errors in the extraction will cause detri-
ment to the substructured results. A good first check is to compare the ana-
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lytical Complex Mode Indicator Function (CMIF) with the CMIF from the
measured data. They should compare “well”. One can compare each ana-
lytical FRF with its measured counterpart as well.
In particular, the drive point FRF from which certain modes are extracted is
very important. The drive point mode shape and modal mass are estimated
from the drive point FRF. If the modal mass is not estimated correctly, the
drive point mode shape will be estimated inversely proportional in error. The
same is true if the damping is estimated incorrectly. If the drive point shape
is in error, generally all the cross point mode shapes will be inversely pro-
portional in error to the drive point mode shape error. This can be observed
by considering the fit to the FRF with an error considered in each of the
various terms singly (modal mass, damping, drive point shape, cross point
shape). See the standard real modes FRF equation below:

Hi j (ω) =
N∑

r=1

−ω2φiφ j

mr (ω2
r − ω2 + 2 jζrωωr )

.

3. Placing sensors to minimize theoretical errors with the transmission simu-
lator
The transmission simulator method is very amenable to analysis using the free
modes of the FE model of the transmission simulator. One chooses at least 1.5
times the number of sensors as the transmission simulator hasmodes in the desired
bandwidth. The mode shape matrix of a large number (perhaps three to ten times
the number of modes) of candidate DOF is obtained. Then one optimizes down
to the desired number of sensors with an algorithm to minimize the condition
number of the mode shape matrix. This can be done iteratively. Condition num-
bers around 3–4 have been used successfully with the final sensor set. Since the
pseudo-inverse of the mode shape matrix is required, the condition number is a
good metric to ensure the matrix is easily invertible. Remember that these shapes
may all be translations as the modal DOF that are inferred from these calculations
will inherently contain the rotations as well.

4. Force Sensor Measurement Errors and their Sources
Drivepointmeasurements are the ones fromwhichmodalmass is determined from
the ratio of force/acceleration. Therefore, the force must be measured accurately.

a. The force is assumed to be co-located with the drive point response
accelerometer.
Often this can be approximated with a force that is co-linear with the
accelerometer. Often fixtures can greatly increase the probability that the
force is co-linear with the accelerometer. For example, force caps over the
accelerometer can be drilled to receive the force gage (for shaker testing) or
with a normal surface and markings for hammer impact. Stubs or blocks can
be incorporated in the transmission simulator fixture to allow for applying
non-normal forces.
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b. Use of shaker versus hammer for force measurements
Shakers and impact hammers each have advantages and disadvantages for
different situations. Here are some of the advantages of each with the dis-
advantages of the other listed beneath.
i. Ashaker can produce amore linear result and better signal-to-noise

ratio for the same peak force on a nonlinear system
A hammer will produce an FRF that is less easily fit with modal param-
eters because of additional nonlinear distortion. In the CMIF below,
one can see the chop just to the right of the 120 and 500Hz resonances
showing the nonlinear distortion of the typical FRFs due to hammer
excitation.

ii. A shaker has more precise input direction, location and amplitude
A handheld hammer may miss the target, induce shear as well as nor-
mal force on the strike and has about three times more uncertainty in
the calibration sensitivity. Pendulum fixtures may improve the impact
location and direction.

iii. A hammer can provide much higher frequency input
The shaker begins to uncouple above the frequency of the armature
resonance. The stinger also has lateral modes that uncouple the response
and can also introduce false modes into the FRF.

iv. Fixtures associated with a shaker may provide unmeasured mass
The force gage associated with a shaker, with its additional fixturing,
can also pollute the FRF by adding undesirable shear and rotation mass,
which may be very significant for small test structures.

v. A hammer provides strong input at the resonances
The shaker force will tend to drop at the resonances, especially for
lightly damped systems. For example, see Fig. 4.22a, where the circled
regions are the force input at the resonant frequencies of the system.
The autospectrum from a hammer does not drop out at resonance, as
shown in Fig. 4.22b (Figs. 4.19, 4.20 and 4.21).

4.6 Virtual Point Transformation

4.6.1 Interface Modeling

Dynamic substructuring requires that compatibility is satisfied between the displace-
ment of the interfaces of two components, and that the interconnecting forces are
in equilibrium. This is easily established for a discrete dynamical system using the
coupling equations as outlined in Chaps. 2 and 3, namely, by imposing the two cou-
pling conditions on the respective coupling nodes of the substructures. In practice,
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Fig. 4.19 Complex mode indicator function example. The figure compares the first singular value
in a CMIF for the experimental data, the fit modal model, and a substructuring prediction

Fig. 4.20 Typical nonlinear distortions
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Fig. 4.21 Force gauges may induce a non-negligible shear force

Fig. 4.22 Shaker autospectrum (left) versus hammer autospectrum (right)

however, components are often connected by bolts, welds, or adhesives, that physi-
cally show more resemblance to a line or surface connection than to a single point.
Modeling such connectivity by experimentalmeasurements requiresmore thoughtful
contemplation of what is really going on at the interfaces between two structures.

In general, one can distinguish two categories of connectivity between substruc-
tures, of which one is normally the most appropriate for a given case:

1. The components are connected at a handful of points that can be regarded as
discrete nodes (Fig. 4.23a). These points are permitted to displace with respect to
each other, thereby allowing for significant deformations in the structures. The
connection points themselves, however, behave fairly rigid in the area near the
interfaces. Deformations in the connecting points are of minor order and not
contributing to the coupled vibrations. Examples are truss structures in bridges
and a steering system mounted in a vehicle subframe.
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(a) Discrete interface points. (b) Continuous interface surface.

Fig. 4.23 Two examples of substructure connectivity

2. The interface resembles a continuous line or surface (Fig. 4.23b). The deformation
of the interface is strongly coupled to the internal vibrations of the structure, and
can therefore not be discretized to a small number of nodes. Examples include
the coupling of a gearbox to an engine, glued carbon-fiber panels of a vehicle’s
bodywork and the partitions of an aircraft’s fuselage.

This next section focuses on the discrete interface situation. Each connection point
can be appointed linear and rotational DOFs for the nodal displacement and forces,
which have a clear physical interpretation. In order to solve the second situation, one
would instead define a set of deformation modes for the interface region and assign
DOFs to their modal amplitudes and forces.

Discrete Interface Modeling

Let us consider a single bolted connection as illustrated in Fig. 4.24. The pretension
in the bolt causes friction to occur at the interfaces, which prohibits the two structures
to have relative motion with respect to each other. If both structures were represented
by an FE model, the substructuring task amounts to coupling the displacements and
interface forces of the coinciding nodes, as illustrated in Fig. 4.24b. By coupling a
sufficient number of nodes over a larger area, any rotational coupling is implicitly
accounted for.

Let us now consider the procedure of experimental modeling. An admittance
measurement needs to be conducted on each substructure in order to obtain the
respective FRFmatrices. To facilitate substructure coupling, the simplest way would
be to mount a single triaxial accelerometer on the connection point of each substruc-
ture and excite in X-, Y-, and Z-directions close to the sensor. This yields a 3-DOF
description which is sometimes called a Single-Point Connection (SPC). In this way,
one obtains a 3 × 3 FRF matrix for the substructure’s interfaces, which can be used
for substructure coupling.
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(a) Friction at the full contact area. (b) Discrete coupling with coinciding
nodes.

(c) EMPC: multiple points, only trans-
lational directions (9 DoFs).

(d) Virtual point transformation: 6 col-
located translations and rotations (9 →
6 DoFs).

Fig. 4.24 A bolted connection: four ways to consider the interface problem

The SPC method does not account for rotational coupling, which is known to be
essential in many cases of substructuring Liu and Ewins (1999), Montalvao et al.
(2004). Measurement and excitation (or in fact observation and controllability) of
rotations has been an active topic of research among experimentalist and has led to
several approaches:

1. Direct measurement. Rotation sensors and transducers can be thought of, but
have not been the practical standard over the past. Some examples of unconven-
tional hardware for rotationmeasurement or excitation can be found in Petersson
(1987), Bello et al. (2003), Liu et al. (2013).

2. Modal expansion. If modal information of the structure is available, for instance,
from static FEM analysis, rotations can be obtained from extrapolation of the
measured data. This is the concept of the system equivalent reduction and expan-
sion process (SEREP) O’Callahan et al. (1989).

3. Finite differences. Rotations can be approximated from translations measured
at known distances from each other Duarte and Ewins (2000), Bregant and
Sandersons (2000). Simple finite difference approaches such as θ = (u0 − ud)/d
may suffice for simple plate or beam problems Sanderson and Fredö (1995),
Elliott et al. (2012), but can be cumbersome for obtaining full 6-DOF kinematics.

4. Multiple translations. The equivalent multi-point connection (EMPC) method
Pasteuning (2007), de Klerk et al. (2008) accounts for the rotations implicitly,
by coupling translational FRFs of multiple points in the proximity of the inter-
face. This is illustrated in Fig. 4.24c. In practice, a minimum of three triaxial
accelerometers (not in line) is sufficient to couple all translational and rotational
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directions,6 introducing a total of NINE DOFs per coupling point. However,
this condition can be too stringent: if the structure between the three connection
points is very stiff, any discrepancy in motion (due to measurement errors) will
be overcompensated for in the coupling equations. This unwanted “stiffening”
of the interface results in spurious peaks in the coupled FRFs Rixen (2008).

5. IDM filtering. By defining six rigid interface displacement modes7 (IDMs) per
connection point and projecting the 9-DOF (or more) admittance matrix onto
this subspace, one only retains the dynamics that load the interface area in a rigid
manner Helderweirt et al. (2001), de Klerk et al. (2008). If substructuring is now
performed with this “filtered” receptance, one only imposes compatibility and
equilibrium on the motion of those nine or more DOFs that obey local rigid
behavior, while the residual flexible motion is left uncoupled. The interface
problem is thereby “weakened” and, due to the least square reduction step,
measurement errors are averaged out.

A common problem of abovementioned methods is the practical difficulty to
collocate applied forces with measured displacements/accelerations. Indeed, one
can never excite exactly at the point where a sensor is located, which is required
to measure a true “driving point” FRF. This already poses a problem for the class
of academic structures, as reported, for instance, in Nicgorski (2008), Nicgorski
and Avitabile (2010), Nicgorski and Avitabile (2010), Harvie and Avitabile (2013),
making real-life structures even more formidable. In addition, it is difficult to define
measurement points in such way that they appear identically on both structures and
can be measured and excited in all required directions.

Concluding, it seems justified to not question if, but rather how much uncertainty
is introduced in the experimental determination of substructure FRFs Ewins and
Inman (2001), de Klerk and Voormeeren (2008), Allen et al. (2010). One assurance
is that the effects of experimental errors becomemore apparent at higher frequencies.8

Hence, it stands to reason to first “message” the raw FRF data of a measurement into
a format that is better suited for substructuring.

Toward Collocated Virtual Point Dynamics

Let us look at the previously discussed IDM filtering method from amodal reduction
point of view. By defining the IDMs for a single connection point, one confines
the dynamics to 6-DOF-per-node kinematics instead of the nine or more DOFs of
the measured FRFs (rows of the matrix). In particular, if the IDMs are defined to
represent the three translations (X, Y, Z) and three rotations (θX , θY , θZ )with respect
to a single point in a global coordinate system, this kinematic description is similar
to a node in an FE model. In that case, the IDMs can be used to transform the

6This is a similar reasoning as a chair being stable on three legs.
7The original definition of IDM is interface deformation mode de Klerk et al. (2008). However, as
we are primarily interested in the modes for which the interface behaves rigid, the wording interface
displacement seems more appropriate.
8This applies to most sources of errors. An example of a frequency-independent error is an offset
in sensor sensitivity due to bad calibration.
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measured translational displacements to 6-DOF motion of a single point. A similar
approach can be followed to extract concentrated 6-DOF forces and moments from
the excitation forces of the FRF measurement (columns of the matrix).

The concept is illustrated in Fig. 4.24d. The resulting 6 × 6 FRFmatrices describe
the dynamic responses of so-called virtual point motion to virtual point loads, or in
other words the admittance of an interface concentrated in a virtual point. The point
is said to be virtual, because no actual measurements need to be performed on the
point itself. In fact, it can be chosen anywhere in the proximity of the interface,
allowing to locate the virtual points identically for two substructures to couple.

Interesting is now how to set up an experiment that leads to a complete and recip-
rocal 6 × 6 virtual point FRF matrix, including proper driving point admittance on
the diagonal. The next two sections propose a methodology to achieve this, based
on de Klerk et al. (2008), van der Seijs et al. (2013). Section4.6.4 introduces use-
ful quality assurance criteria and Sect. 4.6.5 addresses practicalities such as sensor
placement and impact locations.

4.6.2 Virtual Point Transformation

For the derivation of the virtual point transformation, let us consider the coupling
problem of two experimental substructures A and B as illustrated in Fig. 4.25. The
substructures have non-collocated interface DOFs by nature: neither sensors nor
excitation points appear identically. The measured FRF matrices are denoted by
YA(ω) and YB(ω). The governing equation of the uncoupled dynamics is of the
admittance FRF form:

u = Y(f + g). (4.115)

We shall concentrate on the interfaceDOFs, respectively, denoted byYA
22 andY

B
22. As

the interface DOFs are non-collocated, they cannot be equated directly by definition
of a Boolean matrix. In other words, there is no direct relation between uA2 ⇔ uB2 and

uA2

fA2

qA2 ,mA
2

fB2

uB2qB2 ,mB
2⇐⇒

Fig. 4.25 The virtual point transformation workflow for coupling of substructure A (left) and B
(right). Each substructure is instrumented by three acceleration sensors (blue, only four of the six
sensors are visible here). The excitations of the FRF measurements are depicted by red arrows
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gA2 ⇔ gB2 . In what follows, the assumption is used that the structures behave rigidly
in the area close to the coupling point. The derivation focuses on the interface DOFs
of a single substructure, denoted for simplicity by u ∈ R

n .

Interface Displacement Reduction
Let us express the n interface displacementsu bym < n interface deformationmodes
(IDMs) q. The IDMs are contained in the columns of the n × m matrix R, which
is a frequency-independent mode shape matrix (the actual construction of the IDMs
is discussed in Sect. 4.6.3). As the number of IDMs is smaller than the number of
interface DOFs, a residual on the displacements is added, denoted byμ. This residual
captures all displacements not in the subspace of the IDMs, which is normally the
“flexible” motion.

u = Rq + μ q ∈ R
m . (4.116)

To find q in a minimal-quadratic sense, one could apply the standardMoore–Penrose
pseudo-inverse of R, minimizing the norm of the residuals on the displacements and
enforce RT μ = 0. To gain more flexibility, we introduce a symmetric weighting
matrixW acting on the measured set of DOFs. The residual displacement shall then
satisfy:

RTWμ = 0 W ∈ R
n×n . (4.117)

The coordinate transformation u → q follows from standard application of a
weighted least square procedure, namely, by premultiplying (4.116) by RTW and
solving for q. In addition to the IDMcoordinates q, the “filtered” displacement can be
retrieved by substituting q back into (4.116). The resulting displacement is denoted
by ũ. The residual, finally, is simply the remainder of u minus ũ:

⎧
⎪⎨

⎪⎩

q = (RTWR
) −1RTWu (4.118a)

ũ = R
(
RTWR

) −1RTWu (4.118b)

μ = [I − R
(
RTWR

) −1RTW
]
u (4.118c)

To simplify notation, let us introduce the following two substitutions:

⎧
⎪⎨

⎪⎩

q = Tu with T �
(
RTWR

) −1RTW (4.119a)

ũ = Fu with F � RT (4.119b)

μ = (I − F)u (4.119c)

Matrix T is the essential operator of the virtual point transformation. It performs
a linear combination of the n measured DOFs so that m virtual point coordinates
are retained. A minimum condition for the existence of T is to have an IDM matrix
of rank m, which can theoretically be realized by n = m displacement DOFs. This
implies in practice that the physical DOFs u are located and orientated properly to
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describe all m modes independently.9 As a consequence, μ = 0 and ũ = u, meaning
that no filtering is applied.

Any n > m implies that modal filtering is performed on the displacement space,
which means that the residual μ may become nonzero. The filtered displacement
u → ũ can be obtained directly using the n × n filter matrix F defined by (4.119b),
which differs from identity if n > m. The virtual point transformation procedure
becomes a least square fit that minimizes the weighted error in the residuals:

q = argmin
q∈Rm

(
μTWμ

)
. (4.120)

If W is chosen to be identity, the standard pseudo-inverse is found, which leads to
a minimization of the quadratic residuals of the displacements. In general, if W is
a diagonal matrix, it assigns weighting to the individual displacements in the error
minimization. This provides control over the importance of a certainmeasured sensor
DOF for the transformation or allows to temporarily exclude a particular DOF by
setting its weighting to zero. Alternatively, if W is chosen to represent a (dynamic)
stiffness matrix, one is nullifying some local residual energy. Finally, it shall be noted
thatW can be defined per frequency line, allowing to make different choices for the
low-, medium-, and high-frequency range, for instance.

Most important is that the virtual point motion q can be obtained from an overde-
termined set of measured translations u using an IDM matrix R. The transformation
employs a spatial reduction that does not require inversion of measurement data.
Several properties can be assigned to the quality of the transformation, which is
further elaborated in Sect. 4.6.5.

Interface Force Reduction

The reduction of interface forces follows a similar procedure, although in a reversed
manner. Unlike displacements, forces are not uniquely defined by virtual point forces
and moments m (from here on simply called virtual loads). In fact, the other way
around is true.

� To exemplify this, consider a rigid beam hinged around a point of rotation,
i.e., the virtual point. If the beam rotates, every point on the beam has a dis-
placement u which can be uniquely determined from the rotation of the virtual
point q. In other words, q → u is a unique transformation, whereas q can be
determined/averaged from u, provided that a sufficient amount of displacements
is measured (two in case of a simple rotation).

Let us now consider a set of forces acting on the same beam. If a resultant
moment m is known in the virtual point, there is no unique transformation
m → f, asmultiple combinations of forces exist that generate the samemoment.

9To determine a 6-DOF virtual point with just n = 6 translations, one should consider a triad of
points and register, for instance, the directions XYZ, XY, and Z, respectively.
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However, one can always calculate a resultant moment m in the virtual point
due to the applied forces f, if their locations and directions are known. �

Hence, the reduction of forces is performed inversely. A similar IDM matrix can
be constructed, relating the measured forces to virtual point loads. This is again
denoted by R; distinction with the displacement IDMs will be made later on. Note,
however, that the matrix needs to be transposed in order to write the relation between
m virtual loads and n (interface) forces10:

m = RT f. (4.121)

As m is typically smaller than n, (4.121) is underdetermined and the inversion shall
take the form of a weighted right inverse ofRT . This inverse seeks for the minimum-
quadratic set of forces that realizes a given vectorm. In order to prioritize the elements
in the force vector, a symmetric weighting matrix W is again introduced:

f̃ = WR
(
RTWR

) −1m. (4.122)

The resulting set of forces f̃ is automatically admissible, i.e., in the space of R.
Analogue to the displacements, let us introduce the following substitutions:

⎧
⎪⎨

⎪⎩

f̃ = TTm with TT � WR
(
RTWR

) −1 (4.123a)

f̃ = Ff with F � TTRT = RT (4.123b)

ν = (I − F) f. (4.123c)

Equations (4.123b) and (4.123c) allow to calculate the IDM-filtered forces and
residuals (here denoted by ν) in case that the forces are the input. For the virtual
point transformation of admittance, these are normally not used.

Virtual Point Assembly

The interface reduction steps as derived above allow us to assemble only the part of
the dynamics of substructures A and B that can be described by the subspaces of their
respective IDMs. The remaining displacements and forces are left free. From here
on, the transformation matrices for the displacements and forces are clearly denoted
by Tu and Tf.

Let us now continue the assembly of (4.115) by coupling only the part of the
displacements and forces that is admissible with respect to the IDMs. The following
definitions are used:

u =
[
uA2

uB2

]

; g =
[
gA2

gB2

]

; Y =
[
YA

22 0
0 YB

22

]

10The calculation ofm in (4.121) shows resemblance with the modal participation factor calculated
from a vector of applied forces.
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q =
[
qA2

qB2

]

; m =
[
mA

2

mB
2

]

; Tu =
[
Tu

A 0
0 Tu

B

]

; Tf =
[
Tf

A 0
0 Tf

B.

]

The virtual point transformations of (4.119a) and (4.123a) are now used towrite com-
patibility and equilibrium. Whereas the measured displacements uA2 ,uB2 are incom-
patible by nature, the virtual points are in fact compatible so it is permitted to require
qA2 = qB2 . This means that the IDMs used to express the kinematics of substructure
A and B are defined the same way, for instance: both describe three global-frame
translations and three rotations with respect to a unique point in space, i.e., the vir-
tual point. The virtual point DOFs are collocated and can thus be used to write
compatibility and equilibrium.

The same holds for the virtual interface loads, allowing to write the following
dual coupling equations:

{
u = Y (f + g) = Y

(
f − TT

f B
T λ
)

Bq = BTuu = 0
with B �

[−I I.
]

(4.123)

Lagrange multipliers are substituted for the virtual point interface forces of A and
B, enforcing equilibrium on the (rigid) part of the forces in the subspace of the
IDMs.Likewise, compatibility is enforced by the second equation onto the admissible
displacements. The assembly procedure continues in a familiar LM-FBS fashion,
namely, by solving for λ:

BTuY
(
f − TT

f B
T λ
) = 0

BTuYf = BTuYTT
f B

T λ

λ = (BTuYTT
f B

T
) −1BTuYf (4.124)

Now that the virtual point coupling forces are known, the full virtual point coupled
solution is found by substitution back into (4.123):

u = Yf − YTT
f B

T
(
BTuYTT

f B
T
) −1BTuYf. (4.125)

Let us now examine (4.125). At first sight, one recognizes the same ingredients as
for standard LM-FBS coupling. The response consists of an uncoupled response,
i.e., the first term on the right-hand side, and a coupled response to the applied
forces f. The coupling, however, takes a “detour” through a total of four virtual point
transformation matrices. To better comprehend this procedure, let us expand (4.125):

u = Yf︸︷︷︸

uncoupled
response

− YTT
f B

T

︸ ︷︷ ︸

response to
virt. point λ

(
B

virt. point
admittance
︷ ︸︸ ︷

TuYTT
f BT

︸ ︷︷ ︸

virt. point
int. admittance

)−1 BTuYf︸ ︷︷ ︸

incomp.
in q

.
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Reading from right to left, we first recognize the incompatibility caused by the
uncoupled responses. These are transformed to the virtual point space by the operator
Tu. Between the brackets, we observe the combined interface admittance. This is put
in the virtual point space by pre- and post-multiplication of the measured FRFs by
Tu and TT

f . Hence, the term in the center constitutes the virtual point admittance
of the interface, which will be elaborated on later. The Boolean matrices on both
sides of this term function as expected, namely, to select and sum up the admittance
at the interface DOFs in the virtual point space. Lastly, the term to the left of the
inverted admittance governs the response to the virtual point interface forces that are
in front of it. These forces are transformed back to the measured DOF space by the
operator TT

f .
This section has demonstrated how interface FRFs, incompatible by the nature

of experimental measurement, can be coupled by use of appropriate virtual point
transformations. Having clarified all the terms in (4.125), let us now define two
approaches to proceed.

Virtual Point Coupling

The coupling detour explained above can be simplified by grouping the respective
pairs of B and T matrices. This yields two new, yet familiar operators that carry out
the actions of virtual point transformation and DOF selection at once:

{
Bc � BTu compatibility at virtual point (4.127a)

Be � BTf equilibrium at virtual point (4.127b)

Note that these matrices can be fed straight into the LM-FBS algorithm. The sub-
structures’ admittance matrices can be left untouched and, as a consequence, the
resulting coupling FRFs are found in the original dual space of the measured DOFs.

Virtual Point FRFs

In the introduction of this chapter, the need for a nodal model was highlighted: a
dynamic model, composed from collocated FRFs, that is compatible for coupling
with FE or other experimental models. Indeed, for the purpose of dynamic sub-
structuring or transfer path analysis, it may be preferred to transform the entire
measurement into a virtual point admittance matrix. Such matrix can be stored in a
database and easily retrieved for modeling purposes, in the capacity of a dynamic
super-element.

The virtual point admittance was already identified above, namely, as the com-
bined subsystems’ admittances pre- and post-multiplied with their respective trans-
formation matrices. This may as well be computed on a substructure level, for
instance, to obtain the nodal admittance FRFs of substructure s:

Y(s)
qm = T(s)

u Y(s)T(s)
f

T
. (4.128)

The subscript �qm is used here to denote the virtual point DOF space of the new
admittance matrix. As will be demonstrated later, the IDM matrices R have a block
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diagonal structure and so do their resulting T matrices. This means that, given an
arbitrary structure s, the subset of FRFs used for transformation of coupling point
1 is not being reused for transformation of coupling point 2. In addition, the block
diagonal structure makes it easy to keep measured points of interest or additional
excitation points untouched, by mixing in identity elements in the substructure’s
transformation matrices. Let us demonstrate this for the DOFs of the substructures
A and B: [

uA1
qA2

]

=
[
I 0

0 TA
u2

][
uA1
uA2

]

=⇒ qA = TA
u u

A

[
qB2
uB3

]

=
[
TB
u2 0

0 I

][
uB2
uB3

]

=⇒ qB = TB
uu

B.

The coordinate sets qA and qB now contain a mix of original internal DOFs and
virtual point interface DOFs. With respect to the interface conditions, one can now
define Boolean matrices in the traditional fashion, as all interface DOFs are already
collocated due to their matching IDMs. The principles as demonstrated here can be
employed in a customized fashion to serve the needs of the substructuring or TPA
job in prospect.

4.6.3 Interface Displacement Modes

In the preceding section, it was shown that the virtual point transformation relies on a
spatial reductionof coordinates. The interface connectivity is reduced to virtual points
using a predetermined set of interface displacement modes (IDMs) R. This section
elaborates on the construction of the 6-DOF IDMs for a virtual point. The example
of Fig. 4.26 is used to illustrate the theory. Virtual point v is surrounded by nk = 3
triaxial acceleration sensors, registering a total of nine translational displacements11

in the local (x, y, z) frame of the sensors. A hammer impact is indicated by a thick
red arrow.

Displacement IDM

The sensor IDMmatrixR (the subscript is dropped in this section) translates the local-
frame displacements to six virtual point displacements and rotations plus a residual.
Let us write out this equation for a single triaxial sensor k. The orientation of the
sensor is determined by three measurement directions, specified as orthonormal unit
vectors:

[ ek
x ek

y ek
z ] = Ek

11In fact the sensors measure accelerations, but for simplicity of notation displacements are con-
sidered here.
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X

Y

ukxuky
ekx

eky

rk

rh

f heh

qvX

qvY

qv
Z

Fig. 4.26 The IDMs associated with the virtual point (green) can be constructed from the positions
and directions of the measured displacements (blue) and impacts (red)

The distance from the sensor to the virtual point is given by vector rk . The respective
local displacements along these directions are denoted by uk . The six DOFs of virtual
point v comprised of the set qv . The following kinematic relation can be established
between the virtual point qv and the sensor displacements uk :

⎡

⎢
⎣

uk
x

uk
y

uk
z

⎤

⎥
⎦ =

⎡

⎢
⎣

ek
x,X ek

x,Y ek
x,Z

ek
y,X ek

y,Y ek
y,Z

ek
z,X ek

z,Y ek
z,Z

⎤

⎥
⎦

⎡

⎢
⎣

1 0 0 0 rk
Z −rk

Y

0 1 0−rk
Z 0 rk

X

0 0 1 rk
Y −rk

X 0

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qv
X

qv
Y

qv
Z

qv
θX

qv
θY

qv
θZ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
⎡

⎢
⎣

μk
x

μk
y

μk
z

⎤

⎥
⎦ . (4.129)

This relation states how much displacement is measured on the channels of sensor
k for a given displacement and rotation of the corresponding virtual point v. Any
residual displacement ends up in μ.

Introducing R̄kv as the 3 × 6 global-frame IDM matrix associated with sensor k
and virtual point v, we can write this relation for each sensor:

uk = Ek T
R̄kvqv + μk

uk = Rkvqv + μk with Rkv � Ek T
R̄kv. (4.130)

Rkv is the local-frame IDM matrix. For a typical configuration of three sensors
per virtual point, the Rkv matrices can be stacked to form the following system of
equations:
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u = Rq + μ with R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R1,1

R2,1

R3,1

R4,2

R5,2

R6,2

. . .

Rnk ,nv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.131)

Equation (4.131) has the same form as (4.116). Alternatively, one may prefer to
describe the virtual point relation for each measurement channel individually. A
single displacement DOF uk

i with local direction vector ek
i can be related to the

associated set of virtual point coordinates in qv:

uk
i =

[
ek

i
T (

rk
i × ek

i

)T
]
qv + μk

i = Rkv
i qv + μk

i . (4.132)

The single-DOF row vector between the block brackets is of size 1 × 6. The full
matrix R can be constructed row-wise per sensor channel i and column-wise for the
different virtual points.

Regardless of the construction method, the resulting IDMmatrixR is block diag-
onal, or at least contain IDMs that are uncoupled with respect to the various virtual
points and sensor groups. Although not treated here,Rmay be augmented with flex-
ible IDMs if desired.12 In any case, care should be taken that R is full rank, which
implies that sufficient measurement points are considered to compute an inverse or
pseudo-inverse T using (4.119a).

Force IDM

The transformation of the forces can be performed in an analogueway. The following
relation can be written for the set of virtual forces mv as a result of a single impact
f h in the direction of eh and at a distance rh from the virtual point v:
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Z

⎤

⎦ f h (4.133)

Note that the virtual point forces are indeed the direct result of applied forces; hence,
we do not need to add a residual.

12For a definition and application of flexible IDMs, see Pasma et al. (2018).
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Now, to remain consistent with (4.132), the transpose of Rhv is defined:

mv =
[

eh

rh × eh

]

f h = RhvT
f h . (4.134)

Every impact adds a single column to the transposed IDM matrix RT . Assuming
nine impacts per virtual point, the system for the complete set of DOFs reads

m = RT f with R =

⎡
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⎥
⎥
⎥
⎦

. (4.135)

Note that the IDMmatrix of the forces takes the same form as the IDMmatrix of the
displacements from (4.131). In fact, if one decides to excite only on the sensor faces
(which is generally not advised, see Sect. 4.6.5), one has obtained the exact same
IDM matrix, apart from some sign changes.

With more than six independent excitations per virtual point, (4.135) becomes
underdetermined, which means that there is no unique combination of the excitation
forces f from which a certain m can be constructed. The solution is found using the
pseudo-inverse of (4.123a). Instead of minimizing a residual (which was the case for
the displacements), this operation finds a set of excitation forces that minimizes the
W−1-norm of f:

f = argmin‖ fTW−1f ‖.

This again has advantageous properties for interface weakening and error suppres-
sion, as discussed in Sect. 4.6.2.

4.6.4 Measurement Quality Indicators

An important feature of the virtual point transformation is the ability to quantify
the consistency of the measurement. Note that the classical coherence function can
be used to assess properties of single FRFs, but does not tell if a set of n FRFs is
dynamically plausible. The quality functions introduced here are a by-product of the
transformation and reveal important practical aspects of the whole measurement.
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Sensor Consistency

The sensor consistency function is an indicator of the consistency of the measured
response channels with respect to a certain load case. It compares the measured
responses with the responses after projection onto the IDMs. It was originally pro-
posed in de Klerk et al. (2008) as an indicator of the “rigidness” of the interface, but
has additional, generally useful properties.

For the evaluation of the consistency of the sensors around virtual point 1, let
us consider their responses to a load case f2, denoted by u1,2. This load vector is
composed from one or more excitations at coupling point 2, reasonably distant from
virtual point 1. This way, the responses in u1 due to f2 are probably more global
(showing some signal in all directions) than when considered for one ore more
excitations near the sensors around point 1. The filtered responses are found by
premultiplying the responses with the IDM projection matrix Fu for the respective
coordinates:

{
u1,2 � u1,f2 = Y12f2 (4.136a)

ũ1,2 � ũ1,f2 = F11Y12f2. (4.136b)

As mentioned before, Fu is a rank-m filter operator. It differs from identity if the
transformation is overdetermined, namely, for n > m. The filtered responses are in
that case limited by the m modes of the IDM; Fu implements the reduction and
expansion step, (4.119a)–(4.119b) in a single operator.

The responses ũ1,2 shall now be compared with u1,2 to evaluate to what extent the
responses are affected by IDM filtering. Two criteria are discussed next.

Overall Sensor Consistency

To get a quick feeling of the consistency of all sensor channels, the norm of both
vectors can be compared. This yields a frequency-dependent function bounded by
zero (no consistency) and one (full consistency):

ρu1,2(ω) = ‖ũ1,2(ω)‖
‖u1,2(ω)‖ . (4.137)

A function value ρ(ω) = 1 means that the amplitude of all filtered sensor channels
is left unchanged, suggesting that all sensor responses can be fully described by
the m IDMs (6 for a rigid interface) at the specified frequency. Mathematically, it
implies that the singular value decomposition Y12 = U11Σ12VT

22 only comprises m
significant singular values and that the associated left singular modes U11 are all in
the subspace of Ru. In practice, it indicates that all sensors are correctly positioned,
aligned, and calibrated, as otherwise at least one channel would “swing” out of line
and reduce the overall value of ρ.

If the value drops down above a certain frequency, it is often an indication of the
presence of a flexible interface mode. This can be verified by looking at mode m + 1



www.manaraa.com

4.6 Virtual Point Transformation 143

in U11. If the associated singular value is significant, one could consider to augment
the IDM basis by a flexible mode, e.g., based on mode m + 1 in U11.

Specific Sensor Consistency

For evaluation of the consistency per measurement channel, we introduce a variation
of the spectral coherence function. Essentially, this is an expansion of the spectral
coherence function Bendat and Piersol (1980) when evaluated for a total of two
spectra13:

coh(x, y) � (x + y)(x∗ + y∗)
2(xx∗ + yy∗)

x, y ∈ C =⇒

⎧
⎪⎨

⎪⎩

1 if x = y
1
2 if x ⊥ y

0 if x = −y.

(4.138)
This equation compares two values with respect to their amplitude and phase. It is
again bounded between zero and one and can thus be used to objectively compare two
complex response spectra with each other. For evaluation of the specific consistency
of measurement channel ui , we write

ρui,2(ω) = coh
(
ũi,2(ω), ui,2(ω)

)
ui ∈ u1. (4.139)

If the overall sensor consistency is poor over the full frequency range, it may very
well be a problem of just one incorrect sensor direction or calibration value.14 (4.139)
allows to evaluate the consistency of each measurement channel with respect to the
full transformation. This way, the problematic sensor can be identified and the entries
in Ru corrected if needed.

Impact Consistency

Similar to the sensor consistency, it is possible to define a consistency function for the
applied forces. This value is particularly useful to assess the accuracy of the excitation
positions and directions—crucial aspects of impact hammer measurement.

We now consider the effect of the force filter matrix Ff on the responses. In order
to provide a methodology analogue to the sensor consistency, a linear combination
of responses is considered for the evaluation, denoted by scalar y2. Vector w2 is
introduced to compute a (weighted) sum over the response channels of virtual point
2:

y2 = wT
2 u2 w2 ∈ R

n2 .

Note that the quantity y2 has very little dynamical significance; it only allows to
assess the effect of the force filtering with respect to some responses in u2, selected

13Note that other similarity functions may be used here that penalize differences in amplitude and
phase of the two spectra.
14For instance, if one sensor is rotated by 90◦ along the z-axis, a rigid interface motion in the
x, y-plane will appear as a partly flexible motion. The effect will be visible as a low consistency
over the full frequency range.
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and combined using w2. Let us again define an original and force-filtered set of
responses, namely, for all forces f j ∈ f1 corresponding to virtual point 1:

{
y2,1 � [ . . . y2, f j . . . ] = wT

2Y21 (4.140a)

ỹ2,1 � [ . . . ỹ2, f j . . . ] = wT
2Y21.F11 (4.140b)

Here, y2,1 is a row vector comprising the summed responses as a result of all singleton
impacts associated with the columns of Y21. Row vector ỹ2,1 comprises a similar set
of responses, yet for the forces filtered by the force IDMmatrix. This can be reasoned
as follows: for every single impact f j ∈ f1, F11 looks for an equivalent combination
of impacts f1 that produces the same load on the virtual point. This allows to evaluate
if there is any difference in response between the direct application of a single impact
and the compound excitation suggested by the IDM matrix.

Overall Impact Consistency

Comparing the normof the original andfiltered set of responses, ameasure is obtained
for the overall consistency of the impacts:

ρf1,2(ω) = ‖ỹT
2,1(ω)‖

‖yT
2,1(ω)‖ . (4.141)

This frequency-dependent function quantifies how well the full set of impact forces
f1 can be represented by three translational forces and three moments (in case of a
6-DOF IDM matrix). If some excitations points have been positioned too far away
from the virtual point, they may load the interface in a flexible manner, which is
reflected by a low value. More often actually, the value drops because of position
and direction errors in the impacts.

Specific Impact Consistency

The specific impact consistency is used to spot individual impacts that are “non-
consistent” with respect to the transformation. Using the definitions of (4.138) and
(4.140a–4.140b), the following function can be defined:

ρ f j,2(ω) = coh
(
ỹ2, j (ω), y2, j (ω)

)
f j ∈ f1. (4.142)

A low consistency value can have multiple causes, for instance,

• The impact position was off;
• The impact was not in the expected direction;
• The impact was not properly executed (e.g., double pulse, too little energy);
• The impact resulted in a signal overload at one or more channels in u2.

Like the specific sensor consistency, the specific impact consistency may assist in
finding troublesome impacts and fixing entries in the force IDM matrix. This can
greatly improve the transformation results.
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Virtual Point Reciprocity and Passivity

Evaluating sensor and impact consistency is useful to troubleshoot errors in the mea-
surement setup and validation of the assumptions with respect to interface rigidness.
However, a high sensor/impact consistency does not guarantee a truthful virtual point
FRF matrix Yqm. Two additional properties are discussed for quality assessment of
the two-sided transformed data.

FRF Reciprocity

Reciprocity of the original measurement data is in most cases not very meaningful
as the location of sensors and impact positions do not nicely coincide. In contrast,
the virtual point motion and loads are actually collocated, meaning that the virtual
point FRF matrix should be reciprocal. Reciprocity can thus be used to assess the
transformation quality.

Let i and j denote two different DOFs from the set of virtual point DOFs. Then
a frequency-dependent reciprocity function between zero and one is defined by

χ(ω)i j = coh
(
Yi j (ω), Y ji (ω)

)
Yi j , Y ji ∈ Yqm. (4.143)

This function quantifies the similarity in both amplitude and phase between the two
reciprocal virtual point FRFs. Note that for the diagonal of the matrix, i = j and
χi i = 1 by definition. The reciprocity function is therefore only useful for evaluation
of the off-diagonal terms.

Driving Point Passivity

One of the lesser known properties of the FRF matrix is driving point passivity.
Driving point FRFs, i.e., the FRFs on the diagonal of thematrix, need to beminimum-
phase functions. This means that an applied force at DOF i shall always result in a
displacement in the same direction at that point.15 If the function is not minimum
phase, it implies that energy is added after the impulse, which contradicts system
passivity Sjövall and Abrahamsson (2007), Liljerehn and Abrahamsson (2014). As
a consequence, the phase of driving point FRFs shall be bounded as follows:

∠Yi i

⎧
⎪⎨

⎪⎩

∈ [−180, 0] for receptance FRFs

∈ [−90, 90] for mobility FRFs

∈ [ 0, 180] for accelerance FRFs

(4.144)

This property allows to assess the diagonal of the virtual point FRF matrix, which
are the only entries that must demonstrate minimum-phase responses. Conveniently,
those are also the only entries for which the reciprocity criterion does not apply.
Hence, the two criteria are complementary, in some practical way.

15Sign changes only occur at a minimum distance of half the wavelength of the underlying modes.
This can be understood from modal synthesis.
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4.6.5 Instrumentation in Practice

This section discusses some more practical issues related to the virtual point exper-
iment. Proper positioning of the measurement and excitation points is essential to
obtain a high-quality model. Care should be taken to ensure that all six DOFs per
virtual point can be described independently. This has implications for both sensor
placement and impact positions. The following preparation and post-processing steps
are presented in the order as they normally appear in time.

Sensor Placement

The use of triaxial accelerometers has become standard practice in experimental
testing. A single accelerometer hosts three sensing devices in orthogonal directions,
which can be assumed to be collocated. Although one pair of those sensors measures
a total of six channels, it is normally not sufficient to describe all six DOFs of
the virtual point. One linear dependence will appear in the virtual point DOFs: the
triaxial sensors are unable to describe the rotation over the axis spanned between
both sensors, as illustrated in Fig. 4.27b. This is regardless of the position of the
sensors relative to the virtual point. Introduction of a third triaxial sensor, such that
the three sensors span a surface (Fig. 4.27c), enables the three sensors with a total of
nine DOFs to describe all six DOFs of the virtual point properly.

The additional benefit of the third triaxial sensor is the overdetermination of
the interface problem. Applying the virtual point transformation as discussed in
Sect. 4.6.2, the effects of uncorrelated measurement noise, as well as bias errors due
to misalignment of the sensors are reduced, which is generally considered as good
practice. The use of at least three triaxial sensors per virtual point can therefore be
held as rule of thumb, if the aim is to describe the virtual point by six independent
coordinates.

Finally, considering the rigid interface assumption, it seems logical to place the
sensors as close as possible to the virtual point. The smaller the distances are, the
lesser the effects of flexible interface motion compared to the rigid interface motion.

(a) Two sensors spanning a line: one dependency
exists between the rotational axes.

(b) Three sensors spanning a surface: all
rotations are fully determined.

Fig. 4.27 Sensor placement for measurement of accelerations in an arbitrary structure
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On the other hand, for smaller distances, the virtual point transformation gets more
sensitive to absolute errors on the position. In general, one should approach this
aspect with some engineering judgment or a priori knowledge about the system and
measurement equipment.

Excitation Positions

Unlike the six accelerations measured by two triaxial sensors, six well-positioned
hammer impacts are potentially sufficient to fully determine the six generalized loads
of the virtual point. Still, for the same reason, it is preferable to use more excitation
points and overdetermine the force transformation. Similar to the sensor placement,
three impacts in each direction (x, y, z) can be used as minimum, creating nine
columns in the FRF matrix for each coupling point. However, as one is not restricted
by the available measurement equipment (as is the case for the simultaneous sensor
positions), it is advised to excite at muchmore points. Care should be taken to include
excitation directions that do not point straight to the virtual point, in order to generate
“moment” along the rotational axes.

In some studies, the faces of the acceleration sensors were suggested as possible
impact locations de Klerk (2009), van der Seijs et al. (2013). As the impact locations
and directions are equal to the locations and orientations of the measured responses
of the sensor, the same IDM matrix can potentially be used for both transforma-
tions. However, practice shows that FRFs obtained at the sensors’ faces exhibit poor
coherence, especially for the cross-directional FRFs of one sensor. Also, the sensor
is easily driven in overload. As the virtual point transformation does not require
physical driving point measurement (driving point FRFs are correctly rendered by
the two transformations), this type of excitation is discouraged.

With respect to the distance of impact points from the virtual point, a similar
reasoning applies as for the sensors. However, remind that the uncertainty of hammer
impacts is highly subject to the skill of the experimentalist.16 Position errors are
always made, typically in the order of a few millimeters. To minimize their effect
for the transformation, it is advised to excite at some more distance from the virtual
point. This is possible as long as the local rigidness assumption is still justified, which
is normally a matter of the targeted frequency bandwidth.

4.7 Real Applications

This section shows an example of experimental modeling of two substructures, fol-
lowed by coupling by means of frequency-based substructuring. The example is
taken from the IMAC paper van der Seijs et al. (2017).

16This only applies to manual impact hammer testing. Automated hammer or shaker measurements
probably reduce these uncertainties, but are far more elaborate in practice. Considering the sub-
stantial amount of measurement points for our applications, impact hammer measurement is the
preferred method for using the virtual point transformation.
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4.7.1 Experimental Modeling of a Substructure Using the
Virtual Point Transformation

In this section, nodal FRF models will be obtained from impact hammer measure-
ments on the two substructures as depicted in Fig. 4.28. Let us introduce them one
by one and briefly touch upon some design considerations:

• Substructure A is welded together from three pieces of solid aluminum
(30×30mm). It forms an evenly sided triangle and loosely resembles the character
“A”, but was made asymmetric to avoid double resonance modes. It comprises a
number of 10mm diameter holes, at the corner points and along the length of the
members, evenly spaced at distances of 75mm. It hosts a vibration source (not
further discussed here) and can therefore represent the active source system in a
TPA or source characterization problem. The combined weight is circa 2.5kg.

• Substructure B is constructed from two plates of stainless steel with a solid piece of
steel welded in between. The plates are produced using precise laser cutting. Five
holes are placed spanning a total distance of 300mm, again with 75mm spacing
in between. A honeycomb-like pattern of cuts was introduced to reduce weight, as
well as to provide a pattern to align sensors for an observability investigation. As
such, substructure B represents a receiving side into which the source vibrations
of substructure A may propagate. The total weight is circa 10kg.

FRF Measurement

All substructure FRFs have been obtained by impact hammer testing. Figure4.28
depicts how hammer impact points (red arrows) and triaxial accelerometers (gray
cubes) have been positioned and oriented on substructures A and B. Besides some
internal points, themain interests for both substructures are the three coupling points.

VP2

VP1

VP3

(a) Substructure A. The three coupling points
are each instrumented by 3 tri-axial ac-
celerometers and 16 impact points.

VP3

VP1

VP2

(b) Substructure B. The three coupling points
are each instrumented by 3 tri-axial ac-
celerometers and 16 impact points; 2 addi-
tional sensors register target responses in the
structure.

Fig. 4.28 Acceleration sensors (indicated by gray cubes) and impact locations (red arrows) visu-
alized on the substructures
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(a) Overall sensor consistency of 9 sensor
channels around VP2 with respect to excita-
tions around VP1.

(b) Overall impact consistency of 16 (light
blue) and 13 (blue) impacts out of 16 around
VP1 with respect to responses around VP2.

Fig. 4.29 Sensor and impact consistency checks for substructure A

Each coupling point has been instrumented by three triaxial accelerometers of type
PCB 356B21. To determine forces and moments, 16 impact hammer positions are
chosen per coupling point. Altogether, this results in sufficient overdetermination of
the virtual point transformations.

FRF Consistency

In order to evaluate the above assumption on rigidity and obtain insight into the
contribution of single force impacts or displacements to the VP dynamics, several
consistency checks can be done. Let us illustrate the various consistency checks
for substructure A. Figure4.29a shows the overall sensor consistency of VP2 for
excitations around VP1. This operation takes the accelerances of all nine sensor
channels (FRF matrix rows) around VP2 (u) for a combination of hammer impacts
(FRF matrix columns) around VP1, transforms these to the virtual point q, and
expands the accelerances back to their original sensor channels (ũ). The score of
100% over the full bandwidth of 5000Hz indicates that all sensor channels are
perfectly consistent, i.e., ũ = u. This is obvious as the region between the three
sensors is very stiff; values below 100%would probably indicate incorrect placement
of a sensor.

Figure4.29b shows the overall impact consistency for VP1 with respect to
responses around VP2. The light-blue area was computed for all 16 impact points,
which is clearly not optimal. Looking into the specific impact consistency for each
16 impacts, three impacts had significant lower score than average. By discarding
these 3 from the set of 16, the full 6-DOF set of virtual point forces/moments can
still be determined. The dark-blue area was computed for the optimized set, clearly
showing an improved overall impact consistency.

FRF Reciprocity

The VP transformation allows to validate reciprocity of the obtained virtual point
FRFs, as computed by Eq. (4.128). Note that this is possible as the VP displacements
(i.e., translational and rotational accelerations) are perfectly “vectorially associated”
with the corresponding VP loads (i.e., forces and moments). In other words, the
virtual point FRFs behave as if they were computed for nodes of an FE model.

Figure4.30 shows two typical virtual point FRFs: response VP2Y over force
VP3Y of substructure A (left) and response VP2Z over force VP3Z of substructure
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(a) Substructure A: Y-direction of VP2 to VP3
and its reciprocal.
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(b) Substructure B: Z-direction of VP2 to VP3
and its reciprocal.

Fig. 4.30 Reciprocity of the virtual point FRFs of the experimental models of substructures A and
B

B (right). The FRFs reciprocal FRFs are displayed in red. It can be observed that
reciprocity is indeed satisfied, especially up to 2 kHz.

4.7.2 Experimental Dynamic Substructuring of Two
Substructures

Now that VP-transformed FRFs are available for substructures A and B, both struc-
tures are coupled using the LM-FBS algorithm. To do so, the substructure FRF
matrices of A and B are put in block diagonal form and an appropriate Boolean
matrix B is written as follows (not discussed here, see Sect. 2.3 for guidelines):

Ỹ = Y − YBT
(
BYBT

) −1BY Y �
[
YA 0
0 YB

]

. (4.145)

The two-point coupling configuration is considered, which means that coupling is
performed by requiring strict coordinate compatibility and force equilibrium for the
FRFs of virtual points 2 and 3. We now focus on the frequency range of 0–1600Hz.

Some results of the substructured FRFs of AB are depicted in Fig. 4.31. First
in Fig. 4.31a, a driving point FRF on the coupling interface is shown, namely, for
VP2 in Z-direction. The phase is shown as well to assess the passivity17 of the FRF.
Figure4.31b shows a transfer FRF from an internal force impact point on structure
A to an acceleration response internally on structure B. Both points are not part of a
coupling VP; hence, the transfer FRF is realized by coupling over the interface. The

17For an accelerance driving point FRF, the phase should be bounded by 0 and +180◦.
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(a) Driving-point FRF for VP3 in Z-direction.
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(b) Transfer FRF for an internal impact point
on A to an internal acceleration response on B,
both in Z-direction.

Fig. 4.31 Application of dynamic substructuring: assembled FRFs of AB (blue) in two-point
coupling configuration, compared against the validation measurement (red)

substructured FRFs (blue) are compared the measured FRFs of the coupled structure
AB.

The first substructuring results, although not perfect yet, are by all means encour-
aging. It can be seen how resonance frequencies are created at roughly the right
frequencies. The phase around antiresonances is not fully stable; however, the over-
all amplitude of the FRFs matches quite well. Note that no filtering or processing has
been applied to the measured FRF data, except for transformation to virtual points.

4.8 Finite Element Model Updating for Substructuring

In this era of simulation, computational solid mechanics is playing an increasingly
important role in the design and performance of engineering systems. Automobiles,
aircraft, bridges, and high-rise buildings are examples of engineered systems that
have become more and more reliant on computational models and simulation results
to predict their performance, reliability, and safety. For these models to be truly
credible, they need to be validated against experimental data obtained by physical
testing. Because ofmany, far from trivial,modeling issues in computational structural
dynamics, the model validation is most often made in conjunction with a model
calibration (also known as model updating or white-box system identification) to get
a better fit to test data. In this calibration, the model is parameterized for parameters
that are to some degree not certain and these are allowed to adjust for better fit
between simulation and test data to possibly better fulfill setup validation criteria.

A finite element model for a mechanical system is most often developed from
first principles. Such are Hooke’s law for material behavior and Newton’s laws for
equilibrium. In the linear regime, it is usually found that components manufactured
from a solid piece of material are almost trivially modeled to a very high accuracy
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with the finite element method. However, the modeling becomes much harder when
parts (substructures) are put together into an assembly by riveting, bolting, gluing,
or welding. It is often at the modeling of joints and component interfaces that the
modeler’s skill and experience come to a severe test. A vast part of the contribu-
tion to system damping is often attributed to the physical processes occurring in the
interfaces between parts. This poses one challenging problem in the dynamic sub-
structuring since it is at such interfaces the system is normally divided to make the
submodels more manageable. It normally takes a very good insight into physics and
precise information about the details of the system to get the damping models right
at first time. The system damping is therefore most often obtained by testing. After a
model calibration, this damping can usually be mapped to the system model without
precise knowledge about the physics of the damping processes.

This section describes to some detail a frequency response-based calibration pro-
cess that has been found towork on large-scale finite elementmodels and an industrial
example will be given. It starts with defining the concept of a model structure which
regards the parameterization of the calibration problem and some concepts related to
that. It continues with the imprecision of the estimation of the calibration parameters
that is the result of unavoidable noise in testing. Thereafter, it briefly treats the data
processing that leads to the data split that is used for validation with calibration and
cross-validation for assessment of model prediction accuracy. It finishes with the
specifics of calibration and cross-validation, and in particular treats some concepts
and tricks that have been found useful in the calibration of large-scale FE models
with many calibration parameters. However, it does not cover the important topics
of best preparing for an accurate and informative validation test, how to best conduct
the test or to best process the test data for possible inaccuracies and outliers.

Finite element model structure. A finite element model is often specified by an
input file with a given structure with data for the analysis. In that file, the system’s
physical properties are assigned numerical values. The constitutive models for the
used materials are given material property data. The structure’s geometry is given by
nodal point locations of the established discretization grid and the selected element
types. The modeler might have chosen lower dimension elements to represent all or
parts of the structure. Such may by simple scalar elements such as discrete springs
or lumped masses, it may be one-dimensional rod or beam elements, and it may
be two-dimensional plate or shell elements. Such simplistic elements also need to
be described in the input file as plate thicknesses, beam cross-sectional properties,
lumped mass weight, etc. All such numerical data are required to describe the struc-
tural model. The numerical data given can be seen as one specific realization from
a general parametric model structure given by the structure of the input file. Let us
call that model structure M(p) with parameter vector p. Two models M1 and M2

are meant to be equal, i.e., M1(p1) =M2(p2), if they share the same input-to-output
relation but not necessarily the same parameters. If the parameters of the model
parameter vector p were let free, they may be adjusted to the parameter setting that
gives a better fit to the input-to-output relation obtained as experimental data. If the
ideal situation would occur in which the experimental data were free from noise and
bias errors, an exact fit of a model of a proper model structure would be possible. If
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that situation would occur (in practice it never will), it is said that a consistent model
structure or a true model structure is at hand and the associated parameter setting
of the associated perfect model is denoted p�. This parameter setting is sometimes
referred to as the oracle parameter setting.

An optimization scheme can be used to adjust the model parameters to best fit
the test data, that is, the process of model calibration. The calibrated model is thus
one specific realization from the given model structure. If it is found, then find,
eventually after unsuccessful calibration or validation attempts, that it was impossible
to calibrate or validate the model to an acceptable accuracy one needs to choose
another model structure or give up and accept defeat. A validation attempt that
resulted in a negative outcome can often be scrutinized to give some hints to what
model structure changes that are required. A change to another constitutive model
for the material constituents, such as changing from an isotropic material description
to an orthotropic, is an example of changing the model structure. Another possibility
might be to do a more precise modeling of parts that join structural components
together. There are endless other possibilities. However, all such model structure
changes have to be made with good scientific/engineering judgement to be truly
successful. Besides data of the structural model, the input file of the finite element
simulation code also includes a load model and a boundary condition model. The
process of validating the loadmodel is a topic of its own and is not further treated here.
It is assumed that the loading in the associated calibration and validation experiments
aremeasuredwith suchhigh precision resulting in load uncertainties that are too small
to matter.

However, the boundary condition model may require some considerations. The
boundary conditions for the structure under study might be different in the test labo-
ratory than in the real-world application for which the model should be made valid.
In commonly used finite element models, the structural boundaries are most often
considered to be perfectly free or perfectly rigid. These are conditions that are never
met in practice or in the test laboratory. Any nonideal boundary condition may cause
bias effects for the model calibration if not properly accounted for. An assessment
of the mobility of the structural boundary that is connected to the surrounding via
hardware may be required. The remaining surfaces of the structure that tend toward
open-air normally play an insignificant role to the observed structural behavior, but
might be of importance for very lightweight (meaning small weight in relation to the
enveloped volume) structures. For submerged structures, the wet surface boundary
conditions can have a great impact on the structural response and should be modeled
properly.

4.8.1 Finite Element Model Parameter Statistics
and Cross-Validation

In the model calibration, the test data that are available are used in the estimation of
model parameters. These test data are always associated with some randomness. If an
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experiment is repeated under seemingly identical conditions in multiple realizations,
more-or-less different results will be obtained that will affect the parameter estimates.
If the tests are set up carefully and performed with proper hardware and skilled test
engineers in a low-noise environment, the estimation differences will be small but
still present. Identical calibration procedures applied to these different realizations
will render different calibration outcomes. The calibration parameters estimated from
test data will then seemingly have random character because of variations in test data
even if they represent some property that is constant at test. Some basic aspects of the
associated statistical data obtained from the parameter estimation in the calibration
process are described in the following.

Test data for parameter estimation and validation. The topic of parameter
estimation deals with the problem of extraction information from observations that
have randomness. The observations are then realizations of stochastic processes
where noise is really the random part that affects the parameter estimation. Suppose
that the observations are represented by processed test data as random data in z ∈
RN . These observations may be processed time-domain data r ∈ Rnr , that is, the
response output recorded in the vibration testing. In vibration testing, often with a
high channel-count data acquisition system, high sampling rates and long duration
testing, the collected discrete-time data vector sizes may be in the order of billions.
These data are most often processed with frequency analysis and averaging into
transfer function estimates or further via system identification to eigensystem data
as system eigenfrequencies and eigenvectors. This process is then a mapping of r
into z. Although the statistical properties of the collected output data r can often be
easily assessed, the statistical properties of the processed data are often less known.
However, let us assume that the joint probability density function (pdf) of the elements
of z is

pdf(z1, z2, . . . , zN |p), (4.146)

i.e., the probability function depends on the parameter setting p that is believed
to represent real-world physics. But that parameter setting is hidden and implicitly
embedded in test data. The probability of the test outcome to be within the domain
Z (z ∈ Z) is then

P(z ∈ Z) =
∫

z∈Z
pdf(z1, z2, . . . , zN |p)dz1dz2 . . . dzN . (4.147)

In (4.147), p is the n p-dimensional parameter vector that describes properties of
the process that we observe. These parameters are unknown, and the purpose of the
observation is to estimate the vector p using observation data z. This is accomplished
by an estimator p̂(z) which is a mapping function from RN to Rn p . If the observed
value of z is z∗, then consequently the resulting estimate of the parameters is p̂∗ =
p̂(z∗).

Various estimator functions p̂(z) are possible. A particular estimator that maxi-
mizes the probability of the observed data is the maximum likelihood estimator [4.5].



www.manaraa.com

4.8 Finite Element Model Updating for Substructuring 155

It is based on the joint probability density function (4.146) for the random observa-
tions z. The probability that the observed realization indeed should take value z∗ is
thus proportional to jpdf(z∗

1, z∗
2, . . . , z∗

N |p). This is a deterministic function of p once
the numerical values z∗ are inserted. This function is called the likelihood function.
It reflects the likelihood that the observed realization should indeed take place. A
reasonable estimator of p could then be to select it so that the observed realization
becomes as likely as possible. That is to seek

p̂ML(z) = arg max
p

(pdf(z∗|p)), (4.148)

where the maximization is performed for the processed test data z∗, which is one set
of data of the infinitely many realizations possible. The function pML is known as
the maximum likelihood estimator (MLE) for p.

The Cramer–Rao Inequality. The credibility of an estimator can be assessed
by its mean-square error matrix

C = E([p̄ − p0][p̄ − p0]T ). (4.149)

Here, p0 denotes the true (but hidden) value of p, and (4.149) is evaluated under
the assumption that the joint probability density of z is pdf(z|p0).

An estimator that makeC small seems to be a natural choice. It is then interesting
to note that there is a lower limit to the values of C that can be obtained with various
unbiased estimators. This is given by the Cramer–Rao inequality that states the
following.

Theorem 5.1 (Cramer–Rao inequality) Let p̂(z) be an estimator of p such that
E[p̂(z)] = p0, where E evaluates the mean, assuming that the joint probability of z
is pdf(z|p0), and suppose that z may take values in a subset of RN , whose boundary
does not depend on p. Then

E([p̄ − p0][p̄ − p0]T ) ≥ F−1, (4.150)

where

F = E([d(log pdf(z|p))/dp][d(log pdf(z|p))/dp]T )|p=p0 =
−E([d2(log pdf(z∗|p))/dp2])|p=p0 .

(4.151)

Proof See reference [4.8]. �

Since p is an n p-dimensional vector, d(log pdf(z|p))/dp is a n p-dimensional
column vector and the Hessian in (4.151) is an n p-by-n p matrix. This matrix F is
known as the Fisher information matrix. Notice that the evaluation of F normally
requires knowledge of p0, so the exact value of F may not be available to us.
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The Asymptotic Properties of the Maximum Likelihood Estimator. It is usu-
ally very difficult to exactly calculate the statistical properties of the parameter esti-
mates of any given estimator. However, for the MLE estimator there is a classical
theorem, see reference [4.9], that is valid for data that are statistically independent
and in a number that tends to infinity. The theorem states the following.

Theorem 5.2 Suppose that the random data p ∈ RN are statistically independent
so that

jnf(z1, z2, . . . , zN |p) =
N∏

n=1

jnf(zn|p). (4.152)

Suppose also that, in particular, the distribution of z for a given setting of the param-
eters p = p0 is given by jnf(z|p0). Then the random parameter variable pM L(z)
tends to p0 with probability 1 as N tends to infinity, and the random variable√

N (pM L − p0) converges in distribution to the normal distribution with zero mean
and covariance matrix given as the Cramér–Rao lower bound, i.e., the covariance
matrix is the inverse of the Fisher information matrix.

Proof See Ljung (1998). �

Thus, when the number of data N tends to infinity, the MLE pM L are distributed
N (p0,F−1). According to the Cramer–Rao theorem, this is the best an estimator can
do and therefore it is said that the MLE is an efficient estimator.

TheCase ofNormallyDistributedData. Consider the special casewhen the data
zX

n , as obtained from evaluation of test data (eXperiment), can be predicted without
bias with a parameterized model in its calibrated setting p∗. Let the predicted data
from the model be z̆n . The relation

zX
n = z̆n(p∗) + εn (4.153)

introduces εn being the residual that cannot be explained by the model. Assume that
the residuals are statistically independent variables distributed εn ∈ N (0, σ 2

n ) with
known standard deviation σn . In that case, the Fisher information matrix, and thus
the parameter covariance lower bound, can be shown to be

F(p) =
N∑

n=1

σ−2
n [∂ z̆n(p)

∂p
][∂ z̆n(p)

∂p
]T . (4.154)

This result simplifiesmatters much. As can be seen, test data are not explicitly part
of the equation, but only implicitly through the data variance σ 2

n . The identifiability
of the parameters of a given model can thus be evaluated provided assumptions
on residual variance. Different model structures can thus be compared against each
other to find out which gives the best parameter identifiability. For a derivation of
Eq. (4.154), see Ljung (1998).
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Model Distinguishability andmodel selection. In structural dynamics modeling
of complex systems, the possiblity to vary the model structure seems endless. It is
then natural to ask whether the test to be performed on a physical item will make
it possible to decide which model structure is the best. This question is that of the
distinguishabili t y of model structures, which receives a partial answer in the same
idealized framework as model identifiability. One thus assumes that the physical
item is a model with true model structure M̂ represented by a model has the model
structure M. The parameter vector associated with M is p and that associated with
M̂ is p̂. Since the physical item and its model are not necessarily consistent with
the same model structure, it may become impossible to tune the parameters p of the
model so as to obtain the same input–output behavior as that of the real world. It is
this impossibility that may permit the falsification of model structureM1 in favor of
another model structureM2. More precisely,M will be structurally distinguishable
(s.d.) from M̂ if, for almost any feasible values of p̂, there are no feasible values
of p such that M(p) = M̂(̂p). Note the asymmetry of the previous definition. The
fact that M is s.d. from M̂ does not imply that the converse is true. One class of
model structures may include the other as a subclass. Whenever M is s.d. from M̂
and M̂ is s.d. from M, they are said to be mutually structurally distinguishable. In
model selection, the objective is to find that model structure M∗ that is the least
distinguishable from the true model structure M̂. This is made by maximizing the
plausibility that the model structures are indistinguishable, often by use of Bayesian
statistics, see, e.g., Beck and Yuen (2004).

Data split for calibration and validation. The full set of processed test data zx is
normally split into one subset zx

δ for calibration and another subset z
x
γ for validation

with zx = zx
δ ∪ zx

γ . The analysis data z̆ are set up accordingly into z̆δ and z̆γ and
the deviation vectors δ = zx

δ − z̆δ and γ = zx
γ − z̆γ can be used to form metrics for

calibration and validation respectively. In cross-validation, described next, multiple
data split realizations are used to obtain model prediction and model parameter
statistics.

Model Cross-Validation. The cross-validation (XV) technique is normally used
for estimating the prediction capacity of a model. It is a statistical tool that has been
used for a long time, but since it requires intense computing it has not been used
much for large-scale problems until recent years. It normally requires much more
computation than a single calibration since it makes use of repeated calibrations on
subsets of available data. XV targets the expected squared prediction deviation of
the n:th data, i.e.,

P Dn = E[(zX
n − z̆n(p))2]. (4.155)

The expectation refers to the mean value obtained after repeated sampling of
same experimental data entity zX

n . Closely related to the P D is the residual squared
deviation (RSD) of the prediction defined as

RSD = (zX − z̆(p))T (zX − z̆(p))/Nz, (4.156)
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where Nz is the number of data, i.e., the length of the data vectors zX and z̆. The
RSD may be evaluated separately for validation data and calibration data as

RSDγ = γγγ T (p)γγγ (p)/Nγ (4.157)

and
RSDδ = δδδT (p)δδδ(p)/Nδ, (4.158)

where usually RSDγ is larger than RSDδ since the model has been calibrated with
an effort to minimize δδδTδδδ. To truly evaluate the P Di would require experimental
data that are fully independent on calibration data and thus require repeated tests.
Usually, however, test repetitions are not always available for reasons of cost or time.
To circumvent that and give a reasonable substitute of the true prediction deviation,
XV uses part of the available data to calibrate the model, and a different part to
evaluate the RSD of it. This splitting of data is repeated multiple times with different
data in the validation and calibration data sets each time to give useful RSD statistics.
The following describes one possible strategy to do the data splitting.

K-Fold Cross-Validation. In K-fold XV, the available data set is split into K parts
(folds) of roughly the same size. Let k = 1, 2, . . . , K be the index of the k:th such
fold with the Nz data values divided into Nγ k validation data and Nδk = Nz − Nγ k

calibration data. The union of the two data sets thus constitutes the entire data set. The
validation sets are mutually unique and the union of them spans the entire data set.
The validation deviation of the kth set is RSDγ k and the corresponding calibration
deviation is RSDδk .

For the XV, the calibration is made K times using the deviation metric Qk(p) =
δδδT

k δδδk to obtain a parameter estimate associated with the kth split as

pk = argmin
p

Qk(p) (4.159)

resulting in a validation RSD for the k:th fold to be

RSDγ k = γγγ T
k (pk)γγγ k(pk)/Nγ k (4.160)

with the XV estimate of the statistical mean prediction deviation as

RSDXV = 1

K

K∑

k=1

RSDγ k . (4.161)

A popular K-fold XV scheme is to do ten data splits, thus after 10 calibrations
leading to the associated tenfold XV statistics. Another special case of K-fold XV,
when the number of folds K is taken to the extreme, is the leave-one-out cross-
validation. In leave-one-out XV, K = Nz splits are made which leaves one single
data for validation while the remaining Nδk = Nz − 1 data are used for calibration in
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N calibration runs. While the leave-one-out XV have certain advantages, a distinct
disadvantage in a FEM setting is the large number of costly calibrations that have
to be made which makes the leave-one-out cross-validation practically infeasible.
Other popular XV splitting techniques are based on bootstrap data splitting or Monte
Carlo data splitting.

Cross-Validation Estimates of Parameter Statistics. The XV procedures above
are seen to involve multiple runs for finding the calibration parameter setting that
minimizes the calibration deviationmetric for various splittings of available data. It is
natural to use the multiple parameter estimates for statistical evaluation. Evaluation
of mean and covariance of the parameter estimates pk can be done with ease. This
can then be made without explicit knowledge of the noise properties of experimental
data. Compared with the parameter covariance estimate by the Cramer–Rao bound,
which requires explicit knowledge of the noise properties, this is a distinct advantage.

4.8.2 Finite Element Model Calibration

Most calibration problems are solved by gradient-based minimization techniques.
A calibration scheme that uses a gradient-based minimizer needs to work with a
smooth deviation metric for high likelihood of success. That is to obtain convergence
in the search for the parameter’s optimum settings from start settings of the parame-
ters. A well-calibrated model should give high accuracy in simulation of test output
quantities, and ideally predictions with high credibility of other output quantities not
tested. In a frequency-domain context, this often translates to that model which accu-
rately captures the strong response a structural resonance and possibly also the small
response at its antiresonances. A metric that does not discriminate against deviations
at frequencies where the structural response is small is the quadratic functional Q(p)

in
Q = δδδHδδδ δδδ = log(vect(HA(p))./vect(HX )). (4.162)

HereHA andHX are the frequency response functions established by FE analysis
and provided by experiments, respectively, see Eq. (3.85). The function vect(.) is the
vectorizing operation that makes all frequency response function elements of the
transfer function, at all discrete frequencies used for evaluation, into a column vector
and the/ operator denotes the element-by-element division.

Since finite element model calibration tends to be very computationally demand-
ing, calibration criteria that lead to computational efficiency are strong of the essence.
If operations can be spared and therefore reduce calculation times, it can mean that
the calibration issue can move from being an interesting theoretical concept to being
practically useful. However, all computations need to be optimized to provide as
much useful information as possible with as little effort as possible.

Such optimization targets the sampling strategy for the discrete frequencies that
are selected for frequency response function evaluation. The half-bandwidth Δωi of
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a damped structural resonance at frequency ωi and modal damping ζi is given by
Δωi = ζiωi . One observes that the half-bandwidth increases linearly with increasing
resonance frequency. It then seems to be a good frequency sampling strategy to utilize
frequency steps that increase linearly with frequency and thus not oversample the
high-frequency modes or under-sample the low-frequency modes. Such sampling
keeps the number of samples over one half-bandwidth constant over the range. That
is to take steps such that the logarithm of the frequency steps over the frequency range
is constant which makes the frequency steps in direct proportion to frequency. That
sampling strategy seems reasonable, provided that relative damping of all modes
in the range are equal, which rarely happens for experimentally found eigenmodes.
However, the damping can be equalized by a procedure that is treated below. The
influence of the density of discrete frequency steps and damping level can be seen
in Fig. 4.32. It can be noted that the smoothness of the calibration metric is affected
by damping and varying frequency steps.

Damping equalization. A central issue for FRF-based model calibration is that
of model damping. Since, in general, damping has been found to be very difficult to

Fig. 4.32 Normalized deviation metric versus parameter variation from nominal of a stiffness
parameter k and a mass parameter m for (upper) three system damping levels at 0.01, 0.1, and 1%,
and (lower) various frequency sampling rates in number of samples per half-bandwidth (p1/2bw)
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model using first principles, it ismost often assigned a simple representation formod-
eling convenience. Such are the Rayleigh damping and the modal damping models.
These simple representations of all physical dissipation mechanisms that contribute
to the system damping often render a model with prediction accuracy that is suf-
ficient for its intended purpose. In case of modal damping modeling, the model’s
damping is set using the outcome of experimental modal analysis of a modal test of
the structure under investigation, or using engineering judgement in the mapping of
modal damping data from other similar systems. The modal damping found in exper-
iments is normally used for FE simulation without further attempts to understand
their physical background. Physically based parameterization of damping phenom-
ena such as friction, radiation, and dissipation is therefore uncommon. The nature
of the damping mechanisms is normally such that the modal damping varies from
mode to mode. That makes a mapping of experimentally obtained modal damping
into modal damping of FE modes cumbersome. The difficulty arises since the map-
ping of modal damping relies on mode shape pairing, meaning that the same amount
of modal damping should be assigned to modes that are similar with respect to their
deformation pattern.

Mode pairing of experimentally found modes and FEM modes are usually made
through correlation analysis usingMACcorrelation quantification. SuchMAC-based
pairing is normally not straightforward, especially for systems with high modal den-
sity and with sparsely distributed experimental sensor layout. Eigenmode pairing for
the purpose of dampingmappingwould be unnecessary if themodal dampingwas the
same for all modes. To overcome the problem of mode pairing, a method of damping
equalization has therefore been suggested, see Abrahamsson and Kammer (2015).
If all modes have the same amount of damping, there is no need for mode matching.
The damping equalization is achieved by imposing the same modal damping on all
experimentally found system modes by perturbation of a mathematical model of the
experimental data found from system identification using raw frequency response
function data.

Using efficient system identification methods, such as the state-space subspace
method N4SID, these experimental data can be used to obtain a mathematical state-
space model. The experimentally found system transfer function HX

raw can then be
represented by the identified system

ẋ = Ax + Bs, r = Cx + Ds, (4.163)

such that
HX = C(iωI − A)−1B + D. (4.164)

The experimental state-space system can be brought to diagonal form by a simi-
larity transformation as seen in Eq. 3.139. We thus have that

ż = Σz + ΛTBs, r = CTz + Ds (4.165)
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with Σ = diag(σi ) in which σi are the complex-valued system poles as given by the
experimental data. The relative modal damping ζi , obtained from these poles, are

ζi = −sgn(Im(σi ))Re(σi )/Im(σi ). (4.166)

In the process of damping equalization, the real parts of the poles are perturbed
such that the damping is made equal for all modes. The modal dampings are then set
to a single fixed value ζ0, i.e.,

ζi = ζ0. (4.167)

The effect of such damping equalization is that the oscillatory imaginary part of
the poles is preserved and the real damping part is modified such that the perturbed
system poles are now

σ̃i = −ζ0|Re(σi )| + iIm(σi ), (4.168)

and the modified state-space realization is

ż = Ãz + ΛTBs, r = CTz + Ds (4.169)

with
Ã = diag(σ̃i ). (4.170)

This in turn gives a modified transfer function for the experimental model, such
that the transfer function used for calibration with damping equalization is

HX = CT(iωI − Ã)−1T−1B + D. (4.171)

At this stage, it should be obvious that the application of the system identification
procedure on the raw test data HX

raw has led to a mathematical model which can
be evaluated for any frequency ω. In particular, it means that equal log-frequency
increments can be used for transfer function evaluation. In addition to that, also
fictitious modifications of the system under test can bemade. A particular use of such
modification is that the system damping level can be adjusted, leaving stiffness and
inertia properties intact, such that all systemmodal damping are set equal. Themodel
calibration of the FE model can then be made toward this fictitious experimental
model for calibration of parameters that relate to mass and stiffness only.

For the FE-based system representation, the modal damping allows for a simple
representation. For a system with given mass and stiffness matrices M and K, the
viscous damping matrix V is (see Craig 2000)

V = MXdiag(mi )
−1diag(2ζ0miωi )

−1diag(mi )
−1XTM (4.172)

with eigenfrequencies ωi , modal masses mi , and the modal matrix X given by the
undamped system’s eigenvalue problem
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KX = MXdiag(ωi ) diag(mi ) = XTMX. (4.173)

In a calibration procedure, the mass- and stiffness-related parameters p of the FE
model {K(p),M(p)} can be searched for that render the transfer function HA given
by Eqs. 3.85 and 3.110 and that let the criterion function of Eq. 4.162 to be minimal.
The discrete frequencies used to evaluate Eq.4.171 do not have to match the discrete
frequencies used in testing.

In model calibration processed test, data are available and a parameterized FE
model can be used to calculate the same entities. The calibration task is then to
minimize the metric Q, i.e., by searching for the parameter values that give a “best
fit” to experimental data. This is normally a nonlinear minimization procedure in
the sense that the metric is nonlinear in the parameters. The following chapter treats
some well-known procedures to do such minimization. It leads up to the celebrated
Levenberg–Marquardt algorithm much used in model calibration.

Minimizing a Quadratic Functional. In all calibration situations, it is possible
to formulate a quadratic deviation functional from the deviation metric, termed the
residual at p as

Q(p) = 1

2

m∑

i=1

δ2i (p) = 1

2
δδδTδδδ. (4.174)

Calibration problems of the type p∗ = argmin(Q(p))with the quadratic structure
of Q are nonlinear parameter estimation problems. If the calibrated model should be
thrustworthy, Q(p∗) should be small, and the number of deviation vector elements
M should be greater than the number of variables n p. If the latter was not true, then
an arbitrary model could give a close fit to the data.

Although the function in (4.174) can be minimized by a general unconstrained
minimization method, in most situations, the properties of it make it worthwhile to
usemethods designed specifically for nonlinear least squaresminimization problems.
In particular, the quadratic form leads to a Hessian matrix of Q that has a special
structure. Let the M × n p Jacobianmatrix of δδδ(p) be denoted J(p), and let the matrix
Hi (p) denote the Hessian matrix with respect to the deviation vector element δi (p).
Then, the Hessian of Q is

H(p) = J(p)T J(p) +
M∑

i=1

δi (p)Hi (p) ≡ J(p)T J(p) + S. (4.175)

From (4.175), we observe that the Hessian of the least squares objective function
consists of a special combinationoffirst- and second-order information.Least squares
methods are typically based on the premise that eventually, as the iterative search for
the minimum go on, the first-order term J(p)T J(p) of (4.175) will dominate over the
second-order term S as the deviations δi shrink. This assumption is not justified when
the residual at the solution Q(p) is large, i.e., in the order of the largest eigenvalue of
J(p)T J(p) or greater. In such a case, which might be due to a poor model structure or
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noisy test data, one might as well use a general unconstrained minimization method.
However, for many calibration problems, the residual is indeed small enough to
justify the use a special method that uses the smallness of S(p) to the advantage.

The Newton Method. Let pk be the current estimate of the solution at the kth
algorithmic iteration step. Any quantity subscripted by k will indicate that it is evalu-
ated at this step. A Taylor series expansion of to second order about the current point
pk with a perturbation q gives

Q(pk + q) ≈ Qk + JT
k q + 1

2
qTHkq. (4.176)

The search is for the optimizing step q∗ that minimizes Q, i.e., p∗ = pk + q∗. The
minimum will be achieved if q∗ is a minimizer of the quadratic function

Φ(q) = JT
k q + 1

2
qTHkq, (4.177)

where q∗
k satisfies the linear system

dΦ(q)/dq = Jk + Hkq∗
k = 0 (4.178)

A minimization algorithm in which the stationary point is defined by (4.178) is
called aNewton method, and the solutionq∗

k of (4.178) is called theNewton direction.
If Hk is positive definite, only one iteration is required to reach the minimum of

the function (4.176) from any starting point pk , i.e., p∗ = pk + λkqk with the step
length parameter λk = 1. Therefore, a good convergence rate can be expected from
the Newton method when the quadratic model (4.176) is accurate and higher order
Taylor series terms are indeed small. For a general nonlinear function Q, the Newton
method converges quadratically to p∗ if pk is sufficiently close to p∗ and the Hessian
matrix is positive definite at p∗. Also the step lengths λk then converge to unity.
However, for many problems in model calibration, the deviation metric Q is highly
nonlinear in the parameters and other higher order methods suit better.

TheGauss–NewtonMethod.Gauss developed theNewtonmethod further. From
(4.174), the Newton equation (4.177) become

(JT
k Jk + Sk)qk = −JT

k δδδk . (4.179)

Let qk denote the solution of (4.178), also called the Newton direction qN. The
kth step minimization of the function is then made by a one-dimensional search for
the minimum along p = pk−1 + λpN for the search factor λ. The minimum at pk−1 +
λ∗pN is then given by λ∗ = argmin Q(p(λ)). If Qk tends to zero as pk approaches
the minimizing solution, the matrix Sk also tends to zero. Thus, the Newton direction
can be approximated by the solution of the equation

JT
k Jkqk = −JT

k δδδk . (4.180)
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Note that Eq. (4.180) involves only the first derivatives ofδδδ. The solution of (4.180)
is the solution of the least squares problem

q∗
k = arg min

qk

||Jkqk + δδδk ||22 (4.181)

and is unique if Jk has full rank. The vector that solves (4.181) is called the Gauss–
Newton direction and will be denoted qGN. A method in which this vector is used as
a search direction is known as a Gauss–Newton method.

If Jk is of full rank, the Gauss–Newton direction approaches the Newton direction
as Sk tends to zero in the sense that if ||Sk || < ε for a sufficiently small positive scalar
ε, then

||qN − qGN||/||qN|| = O(ε). (4.182)

Consequently, if ||δδδ(p∗)|| is zero and the columns of J(p∗) are linearly indepen-
dent, the Gauss–Newton method can ultimately achieve a quadratic rate of conver-
gence, despite the fact that only first derivatives are used to compute qGN.

In implementations of the Gauss–Newton method, great care is taken to estimate
the rank of Jk . It is seen in Eq. (4.180) that a rank-deficient Jk cause a singular equa-
tion system, and a close-to rank-deficient matrix Jk will make the equation system
ill-conditioned rendering errors in determining the search direction. Ill-conditioning
is a common feature of nonlinear least squares parameter identification problems if
parameter identifiability has not been ascertained. It often manifests itself by that
the deviation metric is practically independent of variation of one or more model
parameters or along a variation of a combination of parameters. Algorithm robus-
tification is normally made by involving the singular value decomposition in the
solution of (4.180) in which the determination of the rank of Jk plays an important
role in estimation good singular value rejection. The rank estimation is determined
by approximation methods. When Q is actually close to an ill-conditioned quadratic
function, the best strategy is normally to allow the maximum possibly estimation of
the rank. However, when Jk is nearly rank-deficient, a generous estimate of the rank
tends to cause very large elements in the solution of (4.180) for the search direction.
This causes large parameter variation for even small steps along the search direction
alongwhich the quadratic deviation function vary very little. This is an unwanted fea-
ture in the parameter estimation process in which the solution should preferably stay
at the nominal configuration for insensitive parameters. This has motivated the intro-
duction of parameter regularization as is done in the Levenberg–Marquardt method
that is described next.

The Levenberg–Marquardt Method. A good alternative to the Gauss–Newton
method for ill-conditioned Hessian is the Levenberg–Marquardt method. It is also an
alternative to the commonly used regularization method of augmenting the criterion
function by penalizing deviation from the nominal parameter setting p0 into

Qreg = Q + κ(p − p0)T (p − p0), (4.183)
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where κ is a regularization parameter. In the Levenberg–Marquardt method, the
downside of modifying the criterion function by augmentation is avoided, but the
upside of regularization of the search direction is still utilized. The Levenberg–
Marquardt search direction is defined as the solution of the equation

(JT
k Jk + κkI)qk = −JT

k δδδk, (4.184)

where the regularizing parameter κk is a nonnegative real scalar. It can be noted that it
differs from the calculation of the Gauss–Newton search direction of (4.180) in that
the approximation to the Hessian is augmented with the Hessian of the regularizing
term in (4.183).

A unit step is almost always taken along qk , i.e., pk+1 is given by pk+1 = pk + qk .
It can be shown that, for some scalar κ0 related to κk , the vector qk is the solution of
the constrained subproblem

q∗
k = arg min||qk ||2≤κ0

||Jkqk + δδδk ||22. (4.185)

By that a unit step in the Levenberg–Marquardt direction is taken at each iteration
step, it makes it a so-called trust-region method. As such a good value of κk must be
chosen in order to ascertain descent. If κk is zero, qk is the Gauss–Newton direction
and as κk → ∞, ||qk || → 0 then q∗

k becomes identical to the search direction of
the well-known steepest-descent method. This implies that Q(pk + qk) < Qk for a
sufficiently large regularization parameter κk . As an alternative, the regularization
parameter κk may be fixed to κk = κ0 and the iterate minimum be found by one-
dimensional line search from pk along the direction qLM ≡ q∗

k .
The usefulness of the Levenberg–Marquardt algorithm for the calibration of com-

putational structural model is because that these models are often overparameter-
ized. This, or other reasons, normally makes some parameters very little identifiable
from test data. That manifests itself by large parameter covariance estimates and is
related to the Fisher information. By the use of the Levenberg–Marquardt method,
the marginally identifiable parameters do not change much from iteration to iteration
and the calibrated solution is close to the initial parameter setting for such parame-
ters, which is, by many, considered to be a sympathetic property of the method. This
is in contrast to the results obtained by the Gauss–Newton method under the same
circumstances.

All methods here considered are seen to use function value and gradient informa-
tion only. None uses the Hessian and are thus Hessian-free, which is a huge benefit
over Hessian-based methods, since the numerical methods of obtaining the Hessian
come with a very high cost. An example of using this calibration procedure is given
as an industrial size application example in Sect. 5.8.
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4.9 Substructuring with State-Space Models

As shown in Sect. 3.4, a state-space model ẋ = Ax + bs, r = Cx + Ds submitted
to a transformation of variables x = Tz preserves its input-to-output relation. One
such transformation, which is suitable for coupling of components on state-space
form, is described next. With that, a transformation can be made to efficiently reduce
the redundant degrees of freedom that are common to the coupled components.
The elimination can be done using compatibility at the component intersection and
is described after an outlook to identification procedures that lead to a state-space
model deduced from test data.

4.9.1 State-Space System Identification

State-space system identification (SSSI) methods are usually split in two categories
out of which one is the stochastic SSSI category (a.k.a. output-only system identifi-
cation) relating to a sub-calls of state-space models of the full state-space model of
Eq. (3.82). For this subclass, one has

x = Ax + Ew (4.186)

r = Cx + v

for which no known stimuli s exist. In stochastic SSSI approximating assumptions
need to be done for the unknown stochastic system loadingw and the stochastic sensor
noisev as away forward in the system identification.The stochasticSSSI is not further
treated here as calibration needs more precise models with lesser approximations.
The other category is the deterministic SSSI relating to the state-space equation

x = Ax + Bs (4.187)

r = Cx + Ds

for which both the system stimuli s and response r are considered being fully known
test data. For the deterministic SSSI category, the system transfer functionHx (ω) can
be estimated from experimental data. Central to the two categories is the estimation
of the system’s observability matrix

Ox =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C
CA
CA2

...

CAnx −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≡
[
C
O

]

≡
[

O
CAnx −1

]

. (4.188)
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Since the true model order ns of the tested system is hidden (for a continuous sys-
tem, the order is infinite), a system identification user needs to specify themodel order
nx that he believes best capture the model as seen through test data. Discrete-time
data for the SSSI are from the nt steps of the stimuli sequences (sk, k = 1, 2, . . . , nt )
and response sequences (rk, k = 1, 2, . . . , nt ). The data projection method used for
the estimation of Ox is at the core of the method but is beyond the scope of this
text with good reading provided by van Overschee and de Moor (1996). For a given
Ox , an estimation of the system’s output matrix C is given by the upper nr rows of
Ox . The shift property O = OA is exploited to give an estimation of the system’s
dynamic matrix A as

A = O
†
O, (4.189)

where ()† denotes the Moore–Penrose pseudo-inverse. For a given couple {A,C},
one notes that the system transfer function (3.85) is linear in {B,D} and estimates
{B∗,D∗} for these can be obtained by the least squares solution from data given at
discrete frequencies ωk, k = 1, 2, . . . , K as

{B∗,D∗} = arg min
{B,D}|{A,C}

||

⎡

⎢
⎢
⎢
⎣

C(iω1I − A)−1B + D − Hx (ω1)

C(iω2I − A)−1B + D − Hx (ω2)
...

C(iωK I − A)−1B + D − Hx (ωK )

⎤

⎥
⎥
⎥
⎦

||22. (4.190)

Since, for a given set {A,B}, the system transfer function (3.85) is linear in {C,D}
a better estimation of these {C∗,D∗} can be obtained by solving the complementary
least squares problem

{C∗,D∗} = arg min
{C,D}|{A,B}

||

⎡

⎢
⎢
⎢
⎣

C(iω1I − A)−1B + D − Hx (ω1)

C(iω2I − A)−1B + D − Hx (ω2)
...

C(iωK I − A)−1B + D − Hx (ωK )

⎤

⎥
⎥
⎥
⎦

||22. (4.191)

The procedure using Eqs. (4.190) and (4.191) in an iterative fashion usually ren-
ders a quick convergence to a good model {A,B,C,D} = {A,B∗,C∗,D∗}.

4.9.2 Physically Consistent State-Space Models

A second-order structural dynamics finite element model as that given in Eq. (3.103)
is physically sound. Its bases are well-known first principles and well-established
discretization techniques. The corresponding state-space companion can therefore
also be considered as physically sound.
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On the other hand, state-space models identified from test data can suffer from
errors made in testing and errors and approximations introduced by signal processing
of test data as the result of pure mistakes, nonideal sensors, and others. Such errors
may lead to state-space model behavior that is not motivated by the physics of the
tested real-world system. Typical such errors are related to stimuli measurements.
Vibration testing is usually made by either impact stimuli by use of hammer-like
impactors or by electromagnetic or hydraulic shakers. In hammer testing, the system
is hit repeatedly at the same location in the same angle of attack toward the system
surface and averages are made to minimize noise effects on estimated frequency
response functions. Ideally, these impacts are exact repetitions which they never are
in practice. For shaker-induced vibrations, the stimuli force obtained by the motion
of the vibrating piston of the shaker, through a tension/compression rod called a
stinger, is measured by a force cell. The stinger should ideally transmit only the
force component in the direction of the stinger and the force cell should be ideal
with sensor output-only linearly proportional to that force transmitted by the stinger.
These ideal conditions do not occur in practice, and unmeasured shear forces and
bending/twisting couples are always transmitted from the shaker through the stinger
sensor into the tested system and spuriously affect the measured system response.
These are just a few examples of the many potential error sources that may lead to
identified state-spacemodels that are not truly valid for their intended purpose.Due to
the unavoidable imperfections introduced by the testing procedure the fundamental
laws of physics can be violated by the identified model. If that is the case, that
model is thus physically inconsistent. If proper actions are not taken state-space
models describing the relation between force/couple input and motion output (such
as displacement, velocity, or acceleration) may violate various physical laws such as
follows.

Stability law. A linear system is stable if the response due to any excitation
is bounded. A system is said to be asymptotically stable if its free motion con-
verges to a fixed equilibrium state. All system poles of an asymptotically stable
system have negative real parts. An unstable system, on the other hand, has one or
more system poles that are positive real which leads to exponential response growth
from arbitrarily small stimulus. A system is said to be marginally stable if it is nei-
ther asymptotically stable nor unstable. An undamped structural dynamics system
Mü + (K + λKg)u = F with λ < λcr is stable but not asymptotically stable since it
will vibrate about an equilibrium point for eternity after impact. On the other hand,
a damped system Mü + Vu̇ + Ku = F with a symmetric positive definite viscous
damping matrix V is asymptotically stable. An identified state-space model, stem-
ming from test data of a stable system, that has system poles with spurious positive
part thus needs trimming. A well-established technique is to mirror any unstable
model poles in the imaginary axis and thus bring those poles being negative real
instead of positive real. This trimming will usually just lead to a small effect on the
system’s frequency-domain transfer functions.

Passivity law. System passivity relates to the flow of energy over a system bound-
ary. The energy conservation principle stipulates that
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Es(t) + Ein(t) − Eout (t) = Es(t0) ∀t > t0 (4.192)

with Es being the system’s internal energy and Ein and Eout are the energies provided
by outside energy sources or absorbed by outside energy sinks. These energies are all
positive quantities. The system is isolated by a system boundary that clearly encap-
sules the inside (the system) from its outside. For a system to be long time passive in
the mechanical sense (LTP) the outside energy influx Ein is purely mechanical and
the system energy at t = t0 is bounded. Assume that there exists a stationary periodic
solution (period T ), to a stationary periodic system stimuli such that

Es(t + nT ) + Em(t + nT ) − Eout (t + nT ) =
Es(t + nT + T ) + Em(t + nT ) + ΔEm(T ) − Eout (t + nT ) − ΔEout (T )

(4.193)

with Em = Ein being the energy provided by the mechanical input. Over one full
cycle T , the internal energy has thus been changed the amount of ΔEm(T ) −
ΔEout (T ). For the LTP system, the energy is bounded 0 ≤ Es(0) < ∞ and thus
it is required for long time stationarity that this amount of change needs to be posi-
tive and thus

ΔEm(T ) > ΔEo(T ) ≥ 0. (4.194)

If not positive, it would require nonpositive energy Es(t + nT + T ) < 0 after
long time t + nT + T , which is unphysical. A periodic solution under the condition
that ΔEm(T ) = 0 can only persist until the system’s initial energy Es(t0) (such as
elastic energy, kinetic energy, potential energy, chemical energy, electromagnetic
energy and heat) is fully drained. For a system to be LTP, it is thus necessary for the
net energy provided by the mechanical stimuli over a fyll cycle to be positive.

The instantaneous power P(t) supplied by a force stimuli F(t) with energy-
conjugate velocity response v(t) is P(t) = FT v(t). For a stationary harmonic
(and thus periodic) force F(t) = F̂(t)eiωt and stationary harmonic response v(t) =
v̂(t)eiωt , the mechanical energy provided to the system over a full cycle T = 2π/ω

is

ΔEm(T ) =
∫ T

τ=0
P(τ )dτ = Re{F̂H

v̂} = Re{F̂H
HF̂}, (4.195)

whereH is the system transfer function for force-to-velocity. The real part of F̂
H
HF̂

evaluates to

ΔEm(T ) = Re{F̂}TRe{H}Re{F̂} + Im{F̂}TRe{H}Im{F̂, } (4.196)

which is seen to be positive for all positive definite Re{H}. For an LTP system,
the real part of the transfer function thus needs to be positive definite. This puts a
constraint on any system model that should truly mimic such a system. Since the
system is passive only if the real part of the mobility frequency response function
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C(iωI + A)−1B is positive definite, the passivity constraint is related to the positive
real (PR) lemma, see Anderson (1967). The lemma states that for a system model to
be PR for all frequencies ω there needs to be a symmetric positive definite matrix P
for some L such that there is a solution to the Lyapunov equation

PA + ATP = −LTL < 0 (4.197)

under the condition that
BTP = C (4.198)

holds. It has been experienced to be far from trivial to find a solution to (4.196) and
(4.197) for the general MIMO system, and no successful attempts have been made
to the authors’ knowledge. Therefore, attempts have been made to prove PR under
less general SISO conditions instead. The general problem is hard to solve since it
requires the search for a solution {P,L} if such at all exists (the PR case) or to prove
that no such solution exists (the non-PR case).

Reciprocity law. Many mechanical systems obey the principle of reciprocity
which manifests itself in symmetric coefficient matrices in the second-order differ-
ential equations. One exception is the spinning mechanical system that generates
unsymmetric Coriolis forces and another exception is the aeroelastic system for
which the aeroelastic forces cause unsymmetry. A common practice to avoid that a
state-spacemodel identified from test data violates the law of reciprocity is to process
the data such that reciprocity results. Say that MIMO transfer function data H(ω)

are taken from a system that is judged to be reciprocal with energy-conjugate stimuli
and responses. The matrix H(ω) is thus square. A simple procedure to modify test
data to be symmetric, and form reciprocal transfer functions Hr (ω), is then to make
averaging of non-diagonal elements of the transfer function matrix as

Hr (ω) = (H(ω) + HT (ω))/2. (4.199)

Other methods rely on weighted averages in which test data quality indicators,
such as test data coherence of the individual elements in H, are used.

Displacement–velocity consistency.Newton’s second law gives a direct relation
between force and acceleration. A state-space model for acceleration response can
therefore include a direct throughput term in the output equation, i.e., the output
equation for acceleration may read ra = Cax + Das with Da �= 0. However, there is
no direct relation from force to displacement or velocity; these are indirectly related to
force and needs to be integrated from the dynamic equation ẋ = Ax + Bs. The output
equation for displacement output thus must read rd = Cdx. Since the velocity output
is related to displacement output as rv = ṙd = Cd(Ax + Bs) = CdAx + CdBs, it
must also hold that CdB = 0. With CdB = 0, one also notes that the acceleration
output may be written ra = ṙv = CdA(Ax + Bs) = CdA2x + CdABs which leads
to the conclusion that CdAB is not necessarily zero.
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For accelerance dataHx , the procedure to improve the estimates of the pair {B,C}
described in Sect. 4.9.1 can bemodified to take account for such physicallymotivated
constraint by iteratively improve the estimates of first B and then Cd in a augmented
least squares sense in the sequence

B∗ = arg min
B|{A,Cd }

||

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CdA2(iω1I − A)−1B + CdAB − Hx (ω1)

CdA2(iω2I − A)−1B + CdAB − Hx (ω2)
...

CdA2(iωkI − A)−1B + CdAB − Hx (ωk)

CdB

⎤

⎥
⎥
⎥
⎥
⎥
⎦

||22 (4.200)

and

C∗
d = arg min

Cd |{A,B}
||

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CdA2(iω1I − A)−1B + CdAB − Hx (ω1)

CdA2(iω2I − A)−1B + CdAB − Hx (ω2)
...

CdA2(iωkI − A)−1B + CdAB − Hx (ωk)

CdB

⎤

⎥
⎥
⎥
⎥
⎥
⎦

||22. (4.201)

Mobility and accelerance constraints. If the mechanical system under study is
not free to undergo rigid body motion its mobility and accelerance transfer functions
in statics (ω = 0) need to be zero.With the velocity output equation rv = Cvx and the
acceleration output equation ra = ṙv = Cv ẋ = CvAx + CvBs, the mobility matrix
at statics thus needs to be CvA−1B = 0 and the accelerance matrix at statics needs
to be 2CvB = 0

Augmented least squares solutions that enforce such constraints for accelerance
data Hx can be obtained by the iterative solutions of

B∗ = arg min
B|{A,Cd }

||

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CvA(iω1I − A)−1B + CvB − Hx (ω1)

CvA(iω2I − A)−1B + CvB − Hx (ω2)
...

CvA(iωkI − A)−1B + D + CvB − Hx (ωk)

CvA−1B
CvB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

||22 (4.202)

and

C∗
d = arg min

Cd |{A,B}
||

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CdA(iω1I − A)−1B + CvB − Hx (ω1)

CdA(iω2I − A)−1B + CvB − Hx (ω2)
...

CdA(iωkI − A)−1B + CvB − Hx (ωk)

CvA−1B
CvB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

||22. (4.203)
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4.9.3 State-Space Realization on Substructuring Form

Consider two state-space components (I and II) that are subjected to coupling. The
motion of the interface between the components is represented by the displacement
vector r ∈ �nc . To the displacement, the vectorially associated (energy-conjugate)
stimuli vectors si ∈ �nc that act on the two components are sI and sI I . For dis-
placement output, a proper state-space representation of the two models i = I, I I
is

ẋi = Aixi + Bi si (4.204)

r = Cixi .

Displacement compatibility at the common interface leads to that the nc displace-
ment outputs r are same for both components. For an energy-conjugate system, a
state-space model structure {Ai ,Bi ,Ci } without a direct throughput term is proper
since such a system lacks direct throughput in consistency with the following lemma.

Lemma 1 An energy-conjugate state-space system {A,B,C,D} for which the
instantaneous power P provided by the stimuli s amounts to P = sT ṙ, the direct
throughput matrix needs to be D = 0.

Proof With the response r = Cx + Ds, the response rate is ṙ = Cẋ + Dṡ =
CAx + CBs + Dṡ and thus the instantaneous power is P = sT (CAx + CBs) +
sTDṡ. To be independent on the stimuli rate ṡ, it requires that sTD = 0 for which the
only possible solution for arbitrary stimulus s is that D = 0. �

Let further the two systems be such that they could alternatively be represented
by second-order differential equations. Then, the relation between the matrices of
the triple {A,B,C} is given by the next lemma.

Lemma 2 For a state-space realization ẋ = Ax + Bs, r = Cx of a second-order
system Mü + Vu̇ + Ku = Pss with response r = Pdu being a linear combination
of u only and with nonsingular mass matrix M, (a) the relation between B and C is
such that CB = 0, and (b) the relation between A, B and C is such that CAB �= 0.

Proof For a second-order system, one possible state-space realization pair is, see
Eq. (3.110),

B =
[

0
M−1Ps

]

, C = Pd
[
I 0
]
,

from which it follows that, also after an arbitrary similarity transformation x = Tz,
the relation of the pair {T−1B,CT} is such that

(CT)(T−1B) = Pd
[
I 0
]
[

0
M−1Ps

]

= 0,
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which proofs part (a). With the structure of A given by Eq. (3.110), it can eas-
ily be verified that CAB = PdM−1Ps . Since M is full rank thus CAB �= 0, unless
under the trivial condition that Pd = 0 and/or Ps = 0, which concludes the proof
of (b). �

4.9.4 State-Space Model Coupling

Let the interface loads of the components be decomposed of two parts, the external
force αi s and the interaction force between the components βi s̄. The interface of the
two components is then loaded by the total external stimuli s = αI s + αI I s (thus
αI + αI I = 1). For the interaction forces βI s̄ and βI I s̄, it holds that βI = −βI I

according to Newton’s law on action and interaction. Further, assume that the models
can be brought to coupling form with a model structure like

ẋi =
⎡

⎢
⎣

0 I 0
Ai

vd Ai
vv Ai

vb

Ai
bd Ai

bv Ai
bb

⎤

⎥
⎦ xi +

⎡

⎢
⎣

0
Bi

vv

0

⎤

⎥
⎦ (αi s + βi s̄) r = [I 0 0

]
xi (4.205)

with state vector

xi =
⎛

⎜
⎝

r
ṙ
xi

b

⎞

⎟
⎠ (4.206)

and with nonsingular Bi
vv with inverse B

−i
vv . The two systems are thus

⎛

⎜
⎝

ṙ
B−I

vv r̈
ẋI

b

⎞

⎟
⎠ =

⎡

⎢
⎣

0 I 0
B−I

vv A
I
vd B−I

vv A
I
vv B−I

vv A
I
vb

AI
bd AI

bv AI
bb

⎤

⎥
⎦ xI +

⎡

⎢
⎣

0
αI s + βI s̄

0

⎤

⎥
⎦ (4.207)

r = [I 0 0
]
xI

and

⎛

⎜
⎝

ṙ
B−I I

vv r̈
ẋI I

b

⎞

⎟
⎠ =

⎡

⎢
⎣

0 I 0
B−I I

vv AI I
vd B−I I

vv AI I
vv B−I I

vv AI I
vb

AI I
bd AI I

bv AI I
bb

⎤

⎥
⎦ xI I +

⎡

⎢
⎣

0
αI I s + βI I s̄

0

⎤

⎥
⎦ (4.208)

r = [I 0 0
]
xI I .

Adding the two systems together results in the coupled system equations with the
expanded state vector x̄T = [r ṙ xI

b xI I
b ] as
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⎛

⎜
⎜
⎜
⎝

ṙ
(B−I

vv + B−I I
vv )r̈

xI
b

xI I
b

⎞

⎟
⎟
⎟
⎠

= (4.209)

⎡

⎢
⎢
⎢
⎣

0 I 0 0
B−I

vv A
I
vd + B−I I

vv AI I
vd B−I

vv A
I
vv + B−I I

vv AI I
vv B−I

vv A
I
vb B−I I

vv AI I
vb

AI
bd AI

bv AI
bb 0

AI I
bd AI I

bv 0 AI I
bb

⎤

⎥
⎥
⎥
⎦
x̄

+

⎡

⎢
⎢
⎢
⎣

0
(αI + αI I )s + (βI I + βI I )s̄

0
0

⎤

⎥
⎥
⎥
⎦

r = [I 0 0 0
]
x̄.

Since αI + αI I = 1 and βI + βI I = 0, this results in the coupled state-space
model

˙̄x =

⎡

⎢
⎢
⎢
⎣

0 I 0 0

Āvd Āvv Ā
I
vb Ā

I I
vb

AI
bd AI

bv AI
bb 0

AI I
bd AI I

bv 0 AI I
bb

⎤

⎥
⎥
⎥
⎦
x̄ +

⎡

⎢
⎢
⎢
⎣

0

B̄vv

0
0

⎤

⎥
⎥
⎥
⎦
s r = [I 0 0 0

]
x̄, (4.210)

for which it is assumed that BI
vv , B

I I
vv and B−I

vv + B−I I
vv ≡ Γ −1 are nonsingular and

its following matrix partitions can therefore be formed

Āvd = Γ [B−I
vv A

I
vd + B−I I

vv AI I
vd ] (4.211)

Āvv = Γ [B−I
vv A

I
vv + B−I I

vv AI I
vv] (4.212)

Ā
I
vb = ΓB−I

vv A
I
vb (4.213)

Ā
I I
vb = ΓB−I I

vv AI I
vb (4.214)

B̄vv = Γ. (4.215)

Then, a state-space model structure on coupling form is realizable, under certain
conditions onA andC, for the energy-conjugate state-space system follows from the
proof of the following lemma.

Lemma 3 (Coupling form lemma)
A state-space system ẋ= Ax + Bs, r = Cx (A ∈ Rn×n,B ∈ Rn×nc ,C ∈ Rnc×n)
stemming from a second-order system Mü + Vu̇ +Ku = Pss can be transformed
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to a system with state-space triple {Ā, B̄, C̄} on the coupling form according to Eq.
(4.205) provided that [C;CA] is of full row rank 2nc and that nc ≤ n.

Proof Let T be a transformation for {A,B,C} with inverse Z be such that

T =
⎡

⎣
C
CA
N

⎤

⎦ and Z ≡ [Z1 Z2 Z3
]
. (4.216)

Let further N ∈ Rn−2nc×n be the projection of the nullspace NB ∈ Rn−nc×n of B
on the nullspace NC ∈ Rn−2nc×n of [C;CA] as

N = NCNT
B(NBNT

B)−1NB, (4.217)

with the nullspaces NC and NB defined by

[C;CA]NC = 0 and NBB = 0. (4.218)

The nullspace NC is of full row rank n − 2nc and thus the combined nullspace
N is also of full row rank n − 2nc because B is not in the nullspace of [C;CA]
since CAB �= 0. Since both [C;CA] and N are full row rank and N is a nullspace of
[C;CA], it implies that T is full rank and thus nonsingular. Using that TZ = I, one
has ⎡

⎣
CZ1 CZ2 CZ3

CAZ1 CAZ2 CAZ3

NZ1 NZ2 NZ3

⎤

⎦ = I,

which, in particular, imply that CAZ1 = 0, CAZ2 = I, and CAZ3 = 0. The first
block row of the system matrix on coupling form Ā = TAT−1 = TAZ is thus

CA
[
Z1 Z2 Z3

] = [CAZ1 CAZ2 CAZ3
] = [0 I 0

]
,

which concludes the proof of the coupling form structure of Ā. The structure of B̄ is
given by

B̄ = TB =
⎡

⎣
C
CA
N

⎤

⎦B =
⎡

⎣
CB
CAB

NCNT
B(NBNT

B)−1NBB

⎤

⎦ =
⎡

⎣
0

CAB
0

⎤

⎦ ≡
⎡

⎣
0
B̄vv

0

⎤

⎦ ,

sinceCB = 0 andNBB = 0which thus proves the coupling form structure of B̄. The
structure of C̄ on the other hand is given from the definition of Z by

C̄ = CT−1 = CZ = [CZ1 CZ2 CZ3
] = [I 0 0

]
,

which ends the proof. �
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Chapter 5
Industrial Applications & Related
Concepts

Abstract This section highlights some specialized substructuring methods, such as
methods for estimating the fixed-interface modes of a substructure from measure-
ments of the free–free structure with a fixture attached at the interface, and also
highlights some industrial examples. Transfer path analysis is reviewed, elaborating
some of the similarities in the theoretical foundations. Most information about TPA
has been obtained from van der Seijs et al. (2016), please refer to the original paper
for a more elaborate discussion.—Chapter Authors: Maarten van der Seijs, Randall
Mayes and Matt Allen.

5.1 Introduction to Transfer Path Analysis

Transfer Path Analysis (TPA) has been a valuable engineering tool for as long as
noise and vibrations of products have been of interest. An TPA concerns a product’s
actively vibrating components (such as engines, gearing systems or turbochargers)
and the transmission of these vibrations to the connected passive structures. TPA is
particularly useful when the actual vibrating mechanisms are too complex to model
or measure directly, as it allows to represent a source by forces and vibrations dis-
played at the interfaces with the passive side. In this way, the source excitations
can be separated from the structural/acoustic transfer characteristics, allowing to
troubleshoot the dominant paths of vibration transmission. The engineer can then
anticipate by making changes to either the source itself or the receiving structures
that are connected to it.

An TPA often rises from the need to reduce some sort of undesired noise or
vibration, for instance, to improve product comfort or lifetime, ensure safety, or
preserve stealthiness. Aside from automotive development, applications are also
seen in industries such as marine and airplane engineering, building acoustics, and
acoustic modeling of musical instruments. An TPA is generally motivated by one of
the following desires:

© CISM International Centre for Mechanical Sciences 2020
M. S. Allen et al., Substructuring in Engineering Dynamics,
CISM International Centre for Mechanical Sciences 594,
https://doi.org/10.1007/978-3-030-25532-9_5

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25532-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-25532-9_5


www.manaraa.com

184 5 Industrial Applications & Related Concepts

1. Secrecy: perhaps, the earliest TPA studies were triggered by the need to reduce
the transmission of engine vibrations in military ships and submarines in order
to make them stealthy. Many publications in the 1950s and 1960s document on
isolation of ship engines bymeans of absorbers and decouplingmechanisms (Har-
rison et al. 1952; Ungar and Dietrich 1966; Plunkett 1958; Soliman and Hallam
1968; Snowdon 1979) to minimize the transmission through the interfaces.

2. Safety: along with the rapid development of airplanes and spacecraft in the 1960s,
TPA concepts started to be of use to study fatigue and stability (flutter) problems
due to active or induced vibrations. As sources of vibrations are much more per-
sistent in aeronautics—think of vortex-induced vibrations—focus was on char-
acterizing the passive transfer paths by means of modal analysis (Bisplinghoff
et al. 1955; On 1967).

3. Comfort: over the past decades, TPA tends to be particularly associated with
Noise, Vibration, and Harshness (NVH) engineering as commonly encountered
in the automotive industry. The majority of recent developments and commercial
solutions have been tailored toward this engineering society or related industries,
driven by the increasing customer expectations on acoustic comfort (Penne 2004;
Plunt 2005; van der Auweraer et al. 2007; Zeller 2009; Cerrato 2009).

In response to the evolving demands, TPA methods have been under continuous
development and their family members have grown numerous. Some designations
that found their way into literature include Operational TPA (OTPA), Operational
Path Analysis with exogenous inputs (OPAX), blocked-force TPA, Gear Noise Prop-
agation, in situ Source Path Characterization and Virtual Acoustic Prototyping. Very
often, thosemethods are presented fromhighly case-specific derivations. Not surpris-
ingly, as the underlying physical concepts are similar, some of the abovementioned
show strong similarities or are even identical.

An TPA workflow can typically be subdivided into the following steps:

1. operational measurement on the active component;
2. determination of the passive (sub)system characteristics (commonly by means of

FRFs);
3. identification of interface loads;
4. calculation of path contributions.

The steps are shown schematically in Fig. 5.1. Depending on the TPA method at
hand, some or all of these steps may be performed in arbitrary order. The opti-
mization actions that follow from such an analysis are generally not considered part
of the workflow.

The next section presents a unified framework for derivation of a large range of
TPA methods. It is chosen to present and classify the methods separate from their
typical fields of application, such that the underlying physical concepts are exposed
and can be compared. In Sect. 5.2, a general framework for TPA is introduced, start-
ing by depicting the transfer problem using the Dynamic Substructuring paradigm
(de Klerk et al. 2008). Hereafter, the TPA methods are derived and classified along
three families, namely the classical (Sect. 5.3), component-based (Sect. 5.4), and
transmissibility-based (Sect. 5.5) TPA methods, as depicted vertically in Fig. 5.1.
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operational test FRF measurement interface loads path contributions

assembly AB passive subsystem B
for assembly AB

product of int. forces 
for AB and FRFs of B

active subsystem A assembly AB
for subsystem A

product of eq. forces 
for A and FRFs of AB

assembly AB partial responses from 
transmissibility of AB

(a) (b) (c) (d)

classical TPA

component-
based TPA

transmissibility-
based TPA transmissibility from operational responses on AB

Fig. 5.1 The TPA workflow, depicted stepwise for the three TPA families

5.2 The Transfer Path Problem

Let us consider the dynamic system AB as schematically depicted in Fig. 5.2a. Two
subsystems can be distinguished: an active subsystem A containing an excitation
at node 1 and a passive subsystem B comprising the responses of interest at node
3. The subsystems are rigidly interconnected at the interface node 2. For simplicity
of derivation, the Degrees of Freedom (DoFs) in this example is restricted to three
distinct nodes. These may, however, represent a larger set of DoFs, representing,
respectively:

(1) source: internal DoFs belonging to the active component that causes the opera-
tional excitation but are unmeasurable in practice;

(2) interface: couplingDoFs residing on the interface between the active and passive
component;

(3) receiver: response DoFs at locations of interest at the passive component, pos-
sibly including acoustic pressures and other physical quantities.

Hence, the example of Fig. 5.2a is illustrative for a wide range of practical problems,
provided that the structure of interest can be decomposed into an active and passive
part. In what follows, all methods assume that the operational excitation at node 1
is unmeasurable in practice, but transmits vibrations through the interfaces at node
2 to receiving locations at node 3. The responses shall then be built up from a
certain description of the vibrations measured at the interface (node 1 → 2) and
an appropriate set of transfer functions relating these vibrations to the receiving
responses (node2 → 3).The fundamental choices herein dictate towhichTPAfamily
the method is classified.

5.2.1 Transfer Path from Assembled Admittance

Let us first approach the transfer problem top-down for the assembled systemAB, see
Fig. 5.2a. We are interested in the response spectra at the receiving locations u3(ω)
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Fig. 5.2 The transfer path
problem

assembly AB

u1

f1

u2
u3

YAB
31

(a) based on the admittance of assembly AB.

subsystem A subsystem B

u1

f1

uA2 uB2
u3

YA
21

YB
32

gA2 gB2λλλ

(b) based on the admittances of subsystems A and B.

for source excitations at node 1, given by the force spectra f1(ω). For the assembled
problem, this is simply obtained from a superposition of the individual contributions,
i.e. the excitation force spectra multiplied with their respective linear(ized) transfer
functions, contained in the columns of admittance FRF matrix YAB(ω).

ui (ω) =
∑

j

YAB
i j (ω) f j (ω) =⇒ u3(ω) = YAB

31 (ω) f1(ω). (5.1)

In the equations that follow, the explicit frequency dependency (ω) will be omitted
to improve readability. Also note that the response set u can include displacements,
velocities, accelerations, or any other quantity, provided that the rows of the FRF
matrices are obtained accordingly. Furthermore, in order to keep the derivations
brief and understandable, it is chosen to only consider the structure-borne paths.
Nevertheless, Eq. (5.1) can easily be extended to include contributions of airborne
paths if the application so requires. In that case, Y and f need to be augmented with
a set of (responses to) acoustic loads such as volume velocities (m3/s) (van der Seijs
et al. 2016).

5.2.2 Transfer Path from Subsystem Admittance

The same transfer function is now derived for an assembly of the individual subsys-
tems, as depicted in Fig. 5.2b. Let us first put the subsystem’s FRF matrices YA and
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YB in a block-diagonal format. The force vector comprising the excitation force is
augmented with interface forces g2 for both sides of node 2, that is yet to be deter-
mined. The obtained system of equations resembles the admittance variant of dual
assembly, which is a standard form of Dynamic Substructuring (de Klerk et al. 2008).

⎡

⎢⎢⎣

u1

uA
2

uB
2

u3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

YA
11 YA

12 0 0
YA

21 YA
22 0 0

0 0 YB
22 YB

23
0 0 YB

32 YB
33

⎤

⎥⎥⎦

⎛

⎜⎜⎝

⎡

⎢⎢⎣

f1
0
0
0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0
gA
2

gB
2
0

⎤

⎥⎥⎦

⎞

⎟⎟⎠ or u = Y (f + g) . (5.2)

The following physical explanation can now be reasoned to solve Eq. (5.2). The
excitation force at node 1 induces a motion at node 2 of subsystem A. As subsystem
B is not directly affected by forces at A (due to the block-diagonal form of the global
FRF matrix), an incompatibility is caused between uA

2 and uB
2 . This is denoted by the

interface “gap” δ, which can conveniently be written using a signed Boolean matrix1

B as shown by Eqs. (5.3a) and (5.3c). Next, assuming that no additional mass is
present between the subsystems, the equilibrium condition is satisfied, requiring the
interface forces g2 on both sides to be equal in magnitude and opposing in sign. The
interface forces are expressed by Eqs. (5.3b) and (5.3c), using a Lagrange multiplier
λ for the magnitude and the transposed Boolean matrix to account for the interface
force direction.

δ = uB
2 − uA

2 or δ � Bu, (5.3a)

gA
2 = −gB

2 = λ or g � −BTλ, (5.3b)

with B = [
0 −I I 0

]
. (5.3c)

The interface forces λ that pull the two subsystems together can be determined from
Eq. (5.3a) by requiring δ = 0, which enforces the compatibility condition uA

2 =
uB
2 . Considering Eq. (5.3b), the interface forces that ensure compatibility can be

determined by equating the second and third line of Eq. (5.2) and solving for λ:

YA
21f1 + YA

22gA
2 = YB

22gB
2(

YA
22 + YB

22

)
λ = −YA

21f1

λ = − (
YA

22 + YB
22

)−1
YA

21f1

gB
2 = (

YA
22 + YB

22

)−1
YA

21f1. (5.4)

Equation (5.4) provides the interface forces at the coinciding interface DoFs caused
by the operational excitation f1 inside subsystem A. The response at the receiving
side uB

3 is found by substituting Eq. (5.4) into the last line of Eq. (5.2):

1The signed Boolean matrix B establishes the relations for all interface DoFs of A and B that are
vectorially associated, e.g. uA2x and u

B
2x . Guidelines on the construction and properties of the signed

Boolean matrix are found in de Klerk et al. (2008).
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u3 = YB
32gB

2 =
[
YB

32

(
YA

22 + YB
22

)−1
YA

21

]

︸ ︷︷ ︸
YAB

31

f1. (5.5)

Comparing with Eq. (5.1), it follows that the terms between the brackets indeed
represent the admittance of the assembly YAB

31 by coupling of the subsystems’ admit-
tances. It can be verified that this result is in accordancewithLagrangeMultiplier Fre-
quency Based Substructuring (LM-FBS) assembly (de Klerk et al. 2008) as detailed
in Chap.3.

So far, it has been assumed that the excitation at node 1 is measurable. In reality,
however, it is impossible or impractical to identify the exact force loading. This
is solved in TPA by assuming that the dynamics at the interface node 2 due to
this excitation are measurable and may very well represent the source excitation.
In what follows, different approaches are examined to describe the transmission of
vibrations, or rather, the response at the passive subsystem B for a nonmeasurable
excitation somewhere inside (or on) the active subsystemA.The notation ofDynamic
Substructuring is used to reveal the relations between the different approaches.

5.3 Classical TPA

The family of Classical TPAmethods is essentially intended to identify transfer path
contributions in existing products. They have, nowadays, become standard prac-
tice to troubleshoot NVH problems in automotive engineering (Plunt 2005; van der
Auweraer et al. 2007). A classical TPA performs operational tests on the assembled
product AB to obtain interface forces between the active and passive side, namely λ

in Eq. (5.4). It can be verified from Eqs. (5.2) and (5.5) that these interface forces
fully determine the responses at the passive side and are thus representative for the
effects of the source vibrations at the receiver locations u3. To calculate the receiver
responses,2, the passive side interface forces gB

2 = −λ are applied to the interfaces
of subsystem B, as shown in Fig. 5.4a.

u3 = YB
32gB

2 . (5.6)

Both steps pose somechallenges in practice.TheFRFsof the passive side are typically
determined from impact or shaker tests, or in a reciprocal fashion using, for instance,
an acoustic source at the receiving location and accelerometers at the interface nodes
(Ten Wolde 1973; ten Wolde et al. 1975; Fahy 1995, 2003; ten Wolde 2010). Either
way, it requires dismounting of the active part(s) from the passive side. With respect
to the determination of operational interface forces gB

2 , it could be impractical to

2In this framework, the resulting responses u3 are formulated as a matrix-vector product, namely
the sum of the partial responses. Techniques to evaluate the individual transfer paths contributions
are discussed in van der Seijs et al. (2016).
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mount force sensors between the active and passive part. Therefore, a number of
indirect methods have been developed to circumvent direct force measurement.

Hence, the variants of classical TPA are defined according to how gB
2 is obtained

from operational tests, which are discussed next.

5.3.1 Classical TPA: Direct Force

The most straightforward technique to obtain the interface forces is from force trans-
ducers mounted directly between the active the passive side, as depicted in Fig. 5.3a.
It was demonstrated by Eq. (5.4) that the interface force caused by the operational
excitation is given by

λ = − (
YA

22 + YB
22

)−1
YA

21 f1 =⇒ gB
2 = −λ. (5.7)

This is valid under the assumption that uB
2 = uA

2 , which requires the stiffness of the
transducers to be high enough (relative to the stiffness of the actual subsystems)
in the frequency range of interest. In fact, the main drawback of the method is the
inconvenience of placing the transducers between the active component and the
receiving structure. Lack of space, distortion of the original mounting situation,
and the incapability to measure all desired degrees of freedom at a connection point
render themethod impractical, especially for typical automotive applications. In case
of large-scale systems such as ship machinery, this method may still be preferred
(Verheij 1982).

5.3.2 Classical TPA: Mount Stiffness

An effective way of reducing vibration transmission is by placing resilient mounts
between the components instead of rigid fixtures, as illustrated in Fig. 5.3b. By proper
tuning of themount flexibility (stiffness) and absorption (damping) properties, a high
level of vibration suppression can be achieved. The mount stiffness method uses
these mount properties to determine the interface forces. Assumed that the added
mass of the mounts is negligible, the interface force equilibrium condition Eq. (5.3b)
is still satisfied. However, the compatibility condition of Eq. (5.3a) is “weakened”,
hence uB

2 − uA
2 is no longer zero. Instead, the m interface forces and coordinate

incompatibilities are related by the dynamic stiffnesses of the mounts, denoted by
zmt
j j , j representing a single interface DoF:

[
gAj
gBj

]
= −zmt

j j

[
1 −1

−1 1

] [
uAj
uBj

]
=⇒ gBj = zmt

j j (u
A
j − uBj ) j ∈ 1, . . . ,m.
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gB2 =−λλλ

?
uA2

uB2

u3λλλ

(a) Direct force.

gB2 = Zmt uA2 −uB2
)

?
uA2

uB2

u3Zmt

(b) Mount stiffness.

gB2 = YB
42

)+ u4

?
uA2

u3

u4

u4
YB
42

(c) Matrix inverse.

Fig. 5.3 Three approaches to determine the operational interface forces in Classic TPA

A spring-like stiffness matrix can be recognized, however, with a minus sign because
the interface forces g j act on the connected subsystemsA and B instead of themount.
Introducing the diagonal mount stiffness matrix Zmt, the full set ofm interface forces
gB
2 can be estimated from the differential interface displacements between the source
and receiver side, i.e. the measured displacements at both sides of the mounts:

gB
2 = Zmt(uA

2 − uB
2 ) with Zmt = diag(zmt

11, . . . , z
mt
mm). (5.8)

In most cases, the flexible mounts are already integrated in the design to attenuate
the vibration transmission. If they are, however, placed in the system for the mere
purpose of TPA, it can be shown that the interface forces and thus the vibrations of
the coupled system are altered significantly (Reuss et al. 2012; Barten et al. 2014),
namely:

gB
2 = (

YA
22 + YB

22 + Ymt
)−1

YA
21f1 with Ymt = (

Zmt
)−1

.

Although the mount stiffness method can be powerful and easy to conduct, the
accuracy is highly subject to the terms3 in Zmt. Typical absorbers exhibit amplitude-
dependent nonlinearities and directional characteristics (Harrison et al. 1952; Ungar
and Dietrich 1966; Thompson et al. 1998).

3Note that the terms in the dynamic stiffness matrix Zmt correspond to differential displacements of
the associated interface DoFs uA

2 − uB
2 and not the coordinates of both A and B. Some implications

for the terms in Zmt are discussed in Voormeeren (2012), Barten et al. (2014).
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5.3.3 Classical TPA: Matrix Inverse

The third and perhaps most popular classical TPA member is the matrix-inverse
method (Powell and Seering 1984; Dobson and Rider 1990; Thite and Thompson
2003a, b). It was observed from Eq. (5.6) that responses at the passive side are found
from application of the interface forces to the passive subsystem’s FRFs. Recalling
these responses from Eq. (5.2):

[
uB
2

u3

]
=
[

YB
22

YB
32

]
gB
2 .

This problem can be inverted if the left-hand side contains sufficient independent
responses to describe all m interface forces and moments in gB

2 . The set of receiver
responses u3 is typically too small in number and too distant from the interfaces to be
suitable for inversion. Inversion of the first row is theoretically sufficient, but requires
complete instrumentation of the assembled structure’s interfaces to measure all DoFs
uB
2 associated with gB

2 . In addition, a symmetric FRF matrix YB
22 would be required

for the passive subsystem’s interfaces, which is challenging to obtain accurately.
In practice, the passive side is equipped with so-called indicator responses u4 as

shown in Fig. 5.3c. An amount of n ≥ m responses shall be located in the proximity
of the interfaces, such that the full set of m interface forces is properly observable
from these points (this is addressed below). As these indicator DoFs merely assist
in the determination of the interface forces, the sensor type can be chosen rather
arbitrarily, although (triaxial) accelerometers are the most common choice.

Two sets of measurements are now required to reconstruct the interface force
spectra. First, responses u4 are measured on the assembled system AB during oper-
ational tests. These can be expressed in terms of subsystem admittances, similar to
Eq. (5.5):

u4 = YAB
41 f1 = YB

42

(
YA

22 + YB
22

)−1
YA

21f1︸ ︷︷ ︸
gB
2

. (5.9)

Next, FRFs need to be measured for the passive subsystem B, relating the motion at
these indicator points to forces at the interface, namely YB

42. Note that this requires
dismounting of the active components from the assembly.Nevertheless, the FRFsYB

42
(needed for thematrix-inverse force determination) andYB

32 (to calculate responses at
the target locations, Eq. (5.6)) can be obtained from the same FRFmeasurement cam-
paign, as it only involves mounting of additional sensors. The operational interface
forces can be reconstructed from a pseudoinverse of the indicator response spectra
u4 with the subsystem FRFs:

gB
2 = (

YB
42

)+
u4. (5.10)
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IfYB
42 is full rank, it holds that

(
YB

42

)+
YB

42 = I, such that in theory the correct interface
forces from Eq. (5.4) are obtained by subsequent application of Eqs. (5.9) and (5.10).
Hence, the conditioning of the FRF matrix is crucial, which should have

1. sufficient rank to describe all interface forces gB
2 independently from the set u4

and;
2. a reasonably low condition number in order not to amplify measurement errors

in the inversion.

As a rule of thumb, it is common to use at least twice as many response DoFs as
strictly required to fully determine the interface forces. Much attention has been
devoted to improving the conditioning of the inverse problem by means of singular
value decomposition, see for instance, the work of Thite and Thompson (2003a, b,
2006), Dobson and Rider (1990), Choi et al. (2007) or an early review of techniques
(Mas and Sas 1994). Time domain implementations have also been developed, such
as the inverse structural filtering methods described in Powell and Seering (1984),
Kammer (1998).

Recently, there has been an interest in the application of strain gages, instead of
the commonly used accelerometers at the indicator points. It is argued that strain
responses possess a more direct relation to interface forces and are better able to
capture the local phenomena of the structure. Consequently, it is expected that strain
measurements lead to better conditioning of the matrix to be inverted (Sachse et al.
2013; dos Santos et al. 2014). More research is currently needed to further verify
this assumption.

5.4 Component-Based TPA

A fundamentally different class of methods is that of the component-based TPA.
As shown in Eq. (5.7), the interface forces obtained from a classical TPA are not a
characteristic of the source alone but of the assembled dynamics. For that reason,
a classical TPA cannot predict the effects of subsystem modification, as one would
need to conduct a newoperational test for every change in design.Hence, the interface
forces measured in an assembly AB are not transferable to an assembly with another
receiving side B.

Component-based TPA tries to characterize the source excitation by a set of equiv-
alent forces or velocities that are an inherent property of the active component itself.
The responses at the receiving side can be simulated by applying these forces to
the FRFs of an assembled system with the active part shut down, as illustrated in
Fig. 5.4b. Hence, the dynamic interaction with the passive side is accounted for in a
later stage, at least not during operational measurements. This allows defining a test-
ing environment that is ideal for operational measurement on the active component,
explaining the denotation component-based.

Interestingly, with respect to the origin of component-based TPA theory, literature
has been very unambiguous. Some researchers have found inspiration in acoustics or
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gA2

subsystem A

uB2

u3
YB
32

gB2

subsystem B

(a) Classic TPA: application of interface forces
(measured under operation of assembled system
AB) to the passive subsystem B.

assembly AB

u2

u3
YAB
32

feq2

(b) Component-based TPA: applica-
tion of equivalent forces (measured un-
der operation of subsystem A) to the
assembled system AB.

Fig. 5.4 Application of forces representing the operational excitation: classical TPA and
component-based TPA

electronic network theory (particularly the equivalent source identities of Thévenin
and Norton), such as Mondot and Petersson (1987), Petersson and Gibbs (1993),
Petersson and Gibbs (2000), Moorhouse (2001), Elliott and Moorhouse (2008),
Moorhouse et al. (2009), Bonhoff (2010). Others derived similar theories from a
structural mechanical point of view (Janssens et al. 1999; Janssens and Verheij 2000;
Gaudin and Beniguel 2012) or dynamic substructuring techniques (deKlerk 2009; de
Klerk and Rixen 2010). As a consequence, a wide variety of component-based TPA
methods have been derived, largely independent of each other. This section presents
a more generic derivation in order to unite all component methods and compare the
various concepts.

5.4.1 The Equivalent Source Concept

Approaching the problem top-down, one is looking for a set of equivalent forces f eq2
that, applied to the interface of the assembled system AB at rest, yields the correct
responses at u3. This can be directly formulated using the admittance of the assembly
YAB

32 , or expanded in terms of its subsystem admittances:

u3 = YAB
32 f eq2 =

[
YB

32

(
YA

22 + YB
22

)−1
YA

22

]
f eq2 . (5.11)

The response u3, as a result of the equivalent forces, should equal the response
obtained when the active component is running in the same assembly, caused by f1
in Eq. (5.5). Comparing Eqs. (5.11) with (5.5), it follows naturally that the equivalent
forces should take the form

YB
32

(
YA

22 + YB
22

)−1
YA

22f eq2 = YB
32

(
YA

22 + YB
22

)−1
YA

21 f1 =⇒
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f eq2 = (
YA

22

)−1
YA

21 f1. (5.12)

Equation (5.12) shows that the equivalent forces are indeed a property on the active
componentAonly. The existence of such an equivalent source problemoffers tremen-
dous potential for practical component-based TPA methods. There is, however, one
important limitation: the equivalent forces only properly represent the operational
excitations for responses on the receiving structure or on the interface. Responses
obtained on the source will be different and therefore of no use. This limitation
was already mentioned in de Klerk (2009), de Klerk and Rixen (2010) and can be
understood by examining the system of Eq. (5.2): responses at the passive side B
are caused only by forces through or onto the interface, whereas the responses at
the source side A are a result of both the direct contribution of f1 and its reflection
through the coupled subsystem B.

In the next section, several approaches are discussed that yield a set of equivalent
forces from operational tests, following the definition of Eq. (5.12).

5.4.2 Component TPA: Blocked Force

Consider the case where the boundary of subsystem A is rigidly fixed, as depicted in
Fig. 5.5a. The operational excitation f1 is entirely portrayed by the reaction forces at
the “blocked” interface gbl

2 , such that the interface displacements uA
2 = 0. A direct

relation is found, leading to the following equivalent force:

[
u1

u2 = 0

]
=
[

YA
11 YA

12
YA

21 YA
22

] [
f1

gA
2 = −gbl

2

]
=⇒

{
gbl
2 = (

YA
22

)−1
YA

21 f1
f eq2 = gbl

2 .

(5.13)

The so-called blocked-force TPA is perhaps the most commonly known variant of
component-based TPAmethods because of its straightforward applicability. It can be
seen as an application of the Thévenin equivalent source problem (Thévenin 1883),
that found its way into popular mechanics halfway the twentieth century (Hixson
1961; Ungar and Dietrich 1966; Rubin 1967). Mathematically, one can regard the
blocked-force method as imposing a Dirichlet boundary condition on the active
subsystem’s interface.

The blocked-force method assumes the boundary to be infinitely stiff in all direc-
tions, which is in practice rarely the case. Hence, the accuracy of the blocked forces
is highly subject to the stiffness of the boundary relative to the component at hand
(de Klerk 2009; van den Bosch et al. 2014; van der Seijs et al. 2014). An additional
difficulty is the measurement of rotational moments, as most commonly used sen-
sors are unable to measure collocated 6-DoF interface loads. As a consequence, the
blocked-forcemethod is expected to perform best at the low-frequency end for which
the rigid boundary assumption is most valid and rotational effects are in practice least
prominent.
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feq2 = gbl2

?
u2

gbl2

(a) Blocked force.

feq2 = YA
22

)−1 ufree2

? ufree2

YA
22

(b) Free velocity.

feq2 = gR2 + YA
22

)−1 u2

? u2
YR

22

gR2

YA
22

(c) Hybrid interface on test rig.

feq2 = YAB
42

)+ u4

?
u2

u4

u4
YAB

42

(d) In-situ in original assembly.

Fig. 5.5 Component-based TPA methods: various approaches to obtain equivalent forces repre-
senting the excitation

5.4.3 Component TPA: Free Velocity

Thedirect counterpart of the blocked-forcemethod is the free velocity TPA as depicted
in Fig. 5.5b. In this case, the component’s interfaces are left free, such that all vibra-
tions are seen as “free displacements” ufree

2 at the interface DoFs. From here on,
equivalent forces4 can be calculated by inverting the admittance measured at the free
subsystem’s interfaces, which can be understood by comparing the free displace-
ments with the blocked force definition of Eq. (5.12):

[
u1

uA
2 = ufree

2

]
=
[

YA
11 YA

12
YA

21 YA
22

] [
f1

gA
2 = 0

]
=⇒

{
ufree
2 = YA

21f1
f eq2 = (

YA
22

)−1
ufree
2 .

(5.14)

Analogue to the blocked-force TPA, this method can be seen as a strict application
of a Neumann boundary condition and is furthermore related to Norton’s equivalent
source theorem for electric networks (Norton 1926). Again, imposing free boundary
conditions can be troublesome as the vibrating system often needs to be mounted at
one or more connection points to be able to run in operation. Therefore, the method
is in practice expected to perform best for frequencies well above the rigid body
modes of the structure. Also note that effects such as friction and damping, which

4If the admittances of the subsystems are available separately, one may also apply the free velocities
directly, as shown in van Schothorst et al. (2012), Rixen et al. (2015).
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would occur at the interfaces of the assembled system, are absent in the operational
measurement on the free component.

The fact that the method makes reference to free velocities rather than free dis-
placements has a historical motive, as the former quantity is commonly applied
in acoustical engineering in combination with acoustic pressure. For such acous-
tic problems, dynamic coupling of admittance is normally discarded. This is a fair
assumption, considering that the impedance of the radiating source is much larger
than the impedance of the receiving surrounding fluid, i.e. air. In structure-borne
vibrations, the source and receiving system often exhibit similar dynamics, hence
explicit coupling is needed. This was realized for a single-DoF problem by means
of a nondimensional coupling function in Mondot and Petersson (1987). Extensions
to multi-DoF systems and further discussion of this topic are found in Petersson and
Gibbs (1993), Petersson and Gibbs (2000), Moorhouse (2001). As a final note, the
free velocity concept has been standardized into an ISO norm for characterization of
structure-borne sound sources (ISO Technical Committee 1996).

5.4.4 Component TPA: Hybrid Interface

As both abovementioned methods pose their limitations in practice, one often prefers
to conduct operational tests on an appropriate support structure. Such a coupled
structure unavoidably displays its own dynamics on the interfaces, which need to be
accounted for in order to render the equivalent forces independent of any connected
part. Let us, therefore, imagine the active component fixed onto a test bench or test
rig R as illustrated in Fig. 5.5c. Denoting the interface admittance of the test rig by
YR

22, we obtain for the extended system of equations:

⎡

⎣
uA
1

uA
2

uR
2

⎤

⎦ =
⎡

⎣
YA

11 YA
12 0

YA
21 YA

22 0
0 0 YR

22

⎤

⎦

⎡

⎣
f1
gA
2

gR
2

⎤

⎦ with

{
uA
2 = uR

2

gA
2 = −gR

2 .
(5.15)

After enforcing the compatibility and equilibrium conditions on the interface DoFs, a
derivation similar to Sect. 5.2.2 can be followed tofind the operational interface forces
gR
2 . These forces are now dependent on the properties of both the active component
A and the test rig R. Substituting the forces back into the second row of Eq. (5.15),
the corresponding interface displacements u2 are obtained as well (the superscript is
dropped because of compatibility):

⎧
⎨

⎩
gR
2 = (

YA
22 + YR

22

)−1
YA

21 f1 (5.16a)

u2 =
[
I − YA

22

(
YA

22 + YR
22

)−1
]

YA
21 f1. (5.16b)

Equations (5.16a), (5.16b) hold for any YR
22, as long as no external force is acting

on the test rig. The desired set of equivalent forces Eq. (5.12) is obtained by com-
bining Eqs. (5.16a) and (5.16b) in such way that the dynamics of the test rig YR

22 are
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eliminated.

f eq2 = (
YA

22

)−1
YA

21 f1 =⇒ f eq2 = gR
2 + (

YA
22

)−1
u2. (5.17)

As it turns out, Eq. (5.17) forms the sum of contributions of both the blocked force
and the free velocity experiment, respectively Eqs. (5.13) and (5.14). One could
therefore speak of a hybrid interface condition, or Robin boundary condition in a
mathematical sense. It can indeed be verified that Eqs. (5.16a)–(5.16b) converge5 to
the blocked forces for YR → 0 and to free velocities when YR → ∞.

The hybrid interface approach combining force and motion was originally pub-
lished in de Klerk and Rixen (2010); the displacement term was regarded in this
work as the “non-rigid test bench compensation” to the imperfect blocked forces.
Although generally applicable in theory, it should be mentioned that the method can
be rather costly and time consuming in practice, as one needs to explicitly measure
collocated forces andmotion in all directions for every interface node (van den Bosch
et al. 2014).

In lack of force measurement, one may substitute the third row of (5.15) for gB
2 .

The so obtained approach was suggested in van der Seijs et al. (2014) and takes
displacement measurement only:

f eq2 = (
YR

22

)−1
u2 + (

YA
22

)−1
u2. (5.18)

The price for not having to measure interface forces is that separate FRF measure-
ments should now be conducted, to obtain the subsystem admittances of the active
component and the test rig.

5.4.5 Component TPA: In Situ

Looking again at Eq. (5.18), we observe that the two inverted admittance FRF matri-
ces, in fact, represent the dynamic stiffness matrices of respectively component A
and R for the same set of collocated interface DoFs. They can be combined by simple
impedance addition6:

f eq2 = (
ZR
22 + ZA

22

)
u2 = ZAR

22 u2. (5.19)

The result of Eq. (5.19) is indeed indifferent to the dynamics of R or any other mount-
ing structure that component A is connected to. Transforming back to admittance
notation, we find that the blocked forces can be calculated inversely from the admit-
tance of the assembly’s interface or, in an overdetermined fashion, using a sufficient
set of indicator points u4 on the receiving subsystem:

5A intuitive presentation of the range between the two limit cases is given in Moorhouse (2001).
6This is standard practice for FEM assembly.
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f eq2 = (
YAR

22

)−1
u2 or f eq2 = (

YAR
42

)+
u4. (5.20)

Obtained from a different derivation, the approach of Eq. (5.20) has first been pro-
posed by Moorhouse and Elliott (Elliott and Moorhouse 2008; Moorhouse et al.
2009) as the in situ method. As implied by the name, the operational measurement
may even be conducted in the target assembly AB, avoiding dismounting of any part,
namely:

f eq2 = (
YAB

22

)−1
u2 or f eq2 = (

YAB
42

)+
u4. (5.21)

The equivalent forces resulting from application of Eq. (5.21) are nonetheless a
property of component A only and thus transferable to an assembly with another
passive side.

The in situ force determination procedure is illustrated in Fig. 5.5d. Indeed, Eq.
(5.21) represents the inverse of Eq. (5.11), yet with an extended set of response DoFs
in order to render the system (over)determined and thus invertible. As a consequence,
the method shows great resemblance with the classical matrix-inverse method of Eq.
(5.10), the difference being the choice for the assembled admittance instead of the
passive subsystem’s admittance. Similar techniques regarding matrix conditioning
(e.g. overdetermination, singular value rejection) apply as well to the in situ method.
Most remarkable is that the receiving side can be chosen arbitrarily, as the equivalent
forces identified by Eq. (5.20) or (5.21) are theoretically invariant of any subsystem
coupled to it. In that respect, two important conditions need to be kept in mind:

1. Operational excitations f1 may only originate from the domain of component A.
Any excitation coming from the passive side will disturb the determination of
equivalent forces.

2. Although the responses used for the matrix inversion (u2 or u4) can be positioned
rather arbitrarily, they are bounded to the domain of the interface and the passive
side. This relates back to the remark made after Eq. (5.12): vibrations at the
source structure are not only caused by the interface forces but also by the source
excitations directly.

Physically, one could interpret the in situ method as follows: knowing the transfer
functions from the interface DoFs to several points on the passive side, Eq. (5.20) or
(5.21) seeks for a set of equivalent forces f eq2 that, applied to the interface DoFs of
the assembled structure, generates the same responses u4 at the passive side. Given
that this response set is overdetermined, the equivalent forces are calculated such
that they minimize the sum of the squared errors (or l2-norm) in the extended set7 u4.

Several numerical and experimental studies of in situ source characterization have
been reported (Elliott 2009; Bonhoff 2010; Elliott et al. 2013; Madsen 2014; van der

7Similar ideas are used in the field of experimental substructure decoupling: the identification of the
force that decouples the residual substructure can be improved by defining an “extended interface”,
adding some additional DoFs on the structure of interest distant from the interface (Sjövall and
Abrahamsson 2008; D’Ambrogio and Fregolent 2010; Voormeeren and Rixen 2012).
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Fig. 5.6 The concept of the pseudo-forces component TPA method

Seijs et al. 2014, 2015). A time domain force reconstruction algorithmwas proposed
by Sturm et al. (2012, 2013). Further generalization of the in situ concept can be
recognized in the pseudo-forces method that is discussed next.

5.4.6 Component TPA: Pseudo-forces

The last member of the component-based TPA family to discuss is the pseudo-
forcesmethod as proposed by Janssens and Verweij in the late 1990s (Janssens et al.
1999; Janssens and Verheij 2000; Janssens et al. 2002). It assumes the existence of a
nonunique set of pseudo-forces acting on the outer surface of the active component,
canceling out the effect of the operational vibrations transmitted through the interface
to the passive side. This is illustrated in Fig. 5.6a. If those forces are now applied
in the opposite direction to the assembly with the source shut down, an identical
response at the receiving side should be obtained, see Fig. 5.6c. In other words, the
pseudo-forces are supposed to represent the source excitation for responses at the
passive side.

The fact that it can be regarded as a component TPA method lies in the former
assumption: if there exists a set of pseudo-forces that cancels out the operational
dynamics at the interface, the responses beyond this interface shall be zero as well,
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hence, these forces are invariant of any structure attached to it. A similar reasoning
may as well be applied to the previously discussed equivalent force methods, yet the
locations of the pseudo-forces are not bounded to the interface but extend to the full
domain of the active component (see Fig. 5.6).

The actual determination of the pseudo-forces is carried out slightly differently.
The first step is to define a set of s pseudo-forces fps on the active component that is
(a) sufficient to represent the excitation source and (b) easily accessible for impact
hammer or shaker measurement. One could think of a minimum of s = 6 forces
when the interface behavior can be considered as rigid, or a larger number in case of
more intricate connectivity. Second, a set of n ≥ s indicator response DoFs has to be
chosen on the passive side fromwhich the operational excitation is monitored. These
responses are denoted by u4 and can be written as a result of f1, similar to Eq. (5.9):

u4 = YAB
41 f1 = YB

42

(
YA

22 + YB
22

)−1
ufree
2,f1 with ufree

2,f1 � YA
21 f1. (5.22a)

A substitution is made here using the free velocity caused by the excitation f1, or in
other words: the theoretical motion at the interface of component A if the interfaces
were left free, see also Sect. 5.4.3. This is by no means a quantity that needs to be
measured, but will prove useful for the derivation later on.

The next step is to determine pseudo-forces fps that best recreate the operational
responses at the indicator DoFs u4 when the source excitation is shut down. Note
that the assumption is similar to the equivalent forces problem stated in Sect. 5.4.1,
yet the pseudo-forces act on the outer surface of the active component rather than its
interfaces. Similar to Eq. (5.22a), the response at the indicator DoFs as a result of
the pseudo-forces reads:

u4 = YAB
4psfps = YB

42

(
YA

22 + YB
22

)−1
ufree
2,fps with ufree

2,fps � YA
21 fps. (5.22b)

Now, the pseudo-forces fps that best describe the operational source excitations are
found from solving an overdetermined system with the response set u4 that was
measured under operation (see Fig. 5.6b):

fps =
(

YAB
4ps

)+
u4. (5.23)

It can be shown that these forces, under certain conditions, are a property of com-
ponent A only. A sufficient condition is that the free interface velocities ufree

2 as a
result of the original source excitation can be fully represented by the set of pseudo-
forces determined from Eq. (5.23). In that case the definitions of Eqs. (5.22a) and
(5.22b) may be equated and one finds that the pseudo-forces are specific for the
source component:

ufree
2,fps = ufree

2,f1 =⇒ fps =
(

YA
2ps

)+
YA

21 f1. (5.24)
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Applying these pseudo-forces to the FRFs of an assembled system of interest, i.e.
YAB

3ps, it can be verified that the correct receiver responses u3 at the passive side are
obtained:

u3 = YAB
3psfps =

[
YB

32

(
YA

22 + YB
22

)−1
YA

2ps

] (
YA

2ps

)+
YA

21 f1 = YAB
31 f1. (5.25)

The pseudo-forces determined fromEq. (5.23) are indeed transferable to an assembly
with another passive side. Equation (5.25) yields the responses for this new assembly,
provided that the columns of the FRF matrix YAB

3ps correspond to the same pseudo-
forces, i.e. excitation points at the source.

The previously discussed in situ method can be regarded as a special case of the
pseudo-force method, namely for the case where the pseudo-forces are located at
the interfaces. The pseudo-forces calculated from Eq. (5.23) shall then equal the
equivalent (blocked) forces from Eq. (5.12), namely fps = f eq2 . With regard to the
positioning of the indicator DoFs u4, the same restriction holds as for the in situ
method, namely that they must be located at the passive system B or at the interface.8

5.5 Transmissibility-Based TPA

The two previously discussed families of TPA have in common that they attempt to
model the vibration transmission in a physically correct sense, namely bydetermining
as many forces and moments as required to describe the subsystem connectivity in
full. Consequently, both families explicitly require the corresponding FRFs for the
interface DoFs to the receiving response locations. It is evident that this approach
ultimately reveals a wealth of information on the particular functioning of the active
component, force distribution over the interface, resonances in the structure, etc. If,
however, the mere purpose of an TPA is to identify the dominant path contributions
in the assembled product, the efforts to set up and conduct the full experiment can
be fairly disproportionate and costly. This is, especially, the case when multiple
incoherent vibration sources are to be investigated.

The last family to discuss avoids the stage of explicit force determination. Instead,
the path contributions are determined from so-called “transmissibilities” between
sensors, possibly calculated from operational measurements. Various methods are
discussed in the following sections that share the following properties:

1. Measurements are conducted on the assembled product only, saving time to dis-
mount the active components. In fact, the interfaces between the active and passive
components are no longer of principal interest.

2. Path contributions are determined from well-chosen indicator points around the
sources or connections. These indicator points function as inputs to the TPA.

3. The result of the analysis is highly subject to the choice for these indicator points;
care should, therefore, be taken to include all transmission paths.

8This was erroneously stated in the original work (Janssens and Verheij 2000).
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f1
u4

u4

u3

(a) Transmissibility from source FRFs.

u4

u4

u3fps

(b) Transmissibility from alternative FRFs.

Fig. 5.7 The transmissibility concept for an example with two connection points

The family of transmissibility-based TPAmethods indeed departs from the traditional
source–transfer–receiver model that assumes a physically meaningful set of loads,
FRFs, and responses.Although potentially less accurate,methodologies derived from
this concept tend to be easy to set up, versatile concerning sensor type and particu-
larly effective for ranking contributions from several sources. From a practical point
of view, transmissibility-based TPA tries to outrun the physically correct methods
by its ability to conduct multiple cycles in a shorter time. Nevertheless, under cer-
tain conditions, results of similar (or even equivalent) accuracy can be achieved as
compared to classical and component-based TPA methods.

5.5.1 The Transmissibility Concept

To discuss the theoretical concepts behind transmissibility-based methods, consider
an assembled system AB with two connection points9 as shown in Fig. 5.7. The
active side contains a vibration mechanism that is characterized by internal forces f1;
the receiver responses at the passive side are denoted by p DoFs in u3. To monitor
the vibrations transmitted across the interfaces, n indicator DoFs u4 are positioned
around the connection points.

Let us first assume that the source excitation f1 can be described by o forces
(or independent force distributions) and that FRFs are measurable for all of the
abovementioned DoFs. The equations for the passive side responses then read:

{
u3 = YAB

31 f1 for p receiver DoFs, (5.26a)

u4 = YAB
41 f1 for n indicator DoFs. (5.26b)

Provided that n ≥ o and YAB
41 is full rank, all excitation forces f1 are observable from

u4. Hence Eq. (5.26b) can be inverted and substituted into Eq. (5.26a). The responses
u3 are now expressed in terms of the DoFs u4 that can be measured under operation:

9An example with two connection points was chosen here merely to provide better insight into some
important cross-correlation properties. There is no fundamental consequence for the generality of
the methods derived.
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u3 = TAB
34,f1u4 with TAB

34,f1 � YAB
31

(
YAB

41

)+
. (5.27)

The so obtained transmissibility matrix TAB
34,f1 relates motion at the indicator DoFs u4

(the inputs) to the receiverDoFsu3 (the outputs) for excitation forces f1. Interestingly,
the size of the transmissibilitymatrix has become p × n, obfuscating the o excitations
associated with the original FRFs. This raises the question which excitations are
really needed to construct the transmissibility matrix and to what extend this matrix
is generally valid for the problem (u4 → u3) under different excitations of the source
structure.

To gain more insight in the transmissibility problem stated by Eq. (5.27), let us
expand Eqs. (5.26a) and (5.26b) in terms of the subsystems’ admittances. As seen
in previous derivations, the terms that couple the subsystems are identical for all
responses (u3, u4) at the passive side:

[
u3

u4

]
=
[

YAB
31

YAB
41

]
f1 =

[
YB

32
YB

42

] (
YA

22 + YB
22

)−1
YA

21f1.

Recalling now the expressions for the interface force and free velocity, respectively
Eqs. (5.4) and (5.14), the following substitutions can be made:

[
u3

u4

]
=
[

YB
32

YB
42

]
gB
2

width

{
gB
2 = (

YA
22 + YB

22

)−1
ufree
2 for m interface forces

ufree
2 = YA

21f1 for m free velocities.

(5.28)

Hence, Eq. (5.28) shows that the transmission of vibrations from o forces f1 to n
responses u4 is limited by the number of DoFs of the interface forces/displacements
m. This means that the interface acts as a bottleneck: it limits the effective rank of
the transmissibility problem to a maximum of m. Furthermore, Eq. (5.28) exposes
two interesting properties of the transmissibility concept:

1. Regarding the source excitation, Eq. (5.28) shows a direct relation between the
interface forces gB

2 of the coupled system and the theoretical free velocities ufree
2 at

the disconnected interfaces of component A. As understood from the component-
basedTPAmethods, various sets of forces canbedefined that equivalently produce
these free interface velocities ufree

2 , such as the pseudo-forces of Eq. (5.22b). This
is illustrated in Fig. 5.7b. In fact, any set of forces on the source that renders
the interface fully controllable will guarantee convergence to a transmissibility
matrix that generally captures the transmission of vibrations caused in component
A. This property is used in the operational TPA method as discussed in the next
section.

2. Regarding the transmissibility, the problem (u4 → u3) is in fact specific to the
passive side only, provided that the interface forces gB

2 are fully observable from
u4. That means that the second line of Eq. (5.28) can be inverted, which is equiv-
alent to Eq. (5.10) from the classical matrix-inverse method. With respect to
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transmissibility-based TPA, it implies that if u4 is chosen in such a way that all
interface forces are observable, gB

2 can be eliminated from Eq. (5.28) and the
transmissibility matrix becomes a property of the passive side only, namely:

u3 = TB
34u4 with TB

34 � YB
32

(
YB

42

)+
. (5.29)

An elegant duality can be observed here with the component-based TPA concept
that characterizes the excitation as a property of the source component. More
properties of the transmissibility matrix are discussed in Guasch et al. (2013),
Weijtjens et al. (2014).

Theoretically, it can be stated that the controllability is a property of the source
component A, whereas the observability is specific to the receiving structure B. If
both conditions are satisfied, Eqs. (5.27) and (5.29) generate the same transmissibility
matrix, hence TAB

34 = TB
34 or simply T34. The pseudo-inversion step involved in Eq.

(5.27) or (5.29) “decorrelates” the transmissibility columns associated with u4 into
linearly independent contributions to the receiver DoFs u3, such that an element of
T34 is defined as follows:

Ti j � ui
uj

∣∣∣∣
uk �= j = 0

{
ui ∈ u3

u j , uk ∈ u4.

This process is often referred to as Cross-Talk Cancelation (CTC). Note that this
concerns a spatial or “modal” decorrelation10 only, just like other methods involving
FRFmatrix inversion. It should therefore by nomeans be understood as some special
signal processing step.

In practice, to obtain T34 from FRFs as illustrated by Fig. 5.7a or b, one requires
sufficient excitations and indicator DoFs to respectively control and observe the
dynamics at the interface. However, the foremost reason for using a transmissibility-
basedTPAmethod is to identify source path contributionswithout the need to conduct
a tedious FRF measurement campaign. The next section discusses how to obtain T34

from operational responses only.

5.5.2 Operational Transfer Path Analysis (OTPA)

The transmissibility matrix T34 can be estimated statistically from the correlation
between u3 and u4 when monitored under a variety of operational test conditions.
The fundamental assumption is that, by testing the vibration source under different

10This decorrelation has been approached in several ways: for instance, based on so-called Global
andDirect Transmissibility Functions (GTDT) in thework ofMagrans (1981), Guasch andMagrans
(2004); Guasch (2009); Guasch et al. (2013) or along conventional FRFs as seen in Varoto and
McConnell (1998), Ribeiro et al. (1999, 2000), Maia et al. (2001).
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Fig. 5.8 Operational TPA:
the source excitation f1
depends on operational
parameters (α, β, . . . ) such
as engine speed or torque

f1(, , . . .)

f1

u4

u4

u3
T34

operational conditions (e.g. a motor operating at different speeds or torques), mul-
tiple load cases are exercised that are slightly independent. However, as seen in the
previous section, the effect of these load cases across the interface are theoretically
limited to a maximum of m independent modes of vibration at the passive side,
because of the bottleneck effect of the interface. This is further discussed below.

Let us now assume that the operational excitation is able to generate sufficient
independent load cases f1(α, β . . . ), whereα andβ represent independent operational
parameters.11 This is illustrated in Fig. 5.8. Equation (5.27) can be established for r
sets of measured responses obtained under different operational conditions, e.g. the
sliced time blocks of a run-upmeasurement. This amounts to stacking the r measured
spectra of the receiving DoFs and indicator DoFs columnwise into arrays U3 and U4

to construct the following system of equations (the superscript on u indicates the
measurement block number):

[
u(1)
3 u(2)

3 · · · u(r)
3

]
︸ ︷︷ ︸

p×r

= T34
︸︷︷︸
p×n

[
u(1)
4 u(2)

4 · · · u(r)
4

]
︸ ︷︷ ︸

n×r

=⇒ U3 = T34U4. (5.30)

When sufficient measurement data is acquired to ensure r ≥ n, the problem of Eq.
(5.30) can be made invertible by post-multiplying with UH

4 . The transmissibility
matrix is then found from solving this system or, more conveniently, from the H1

estimator12 of the Cross-Power Spectra (CPS) and Auto-Power Spectra (APS) of the
measured DoFs:

T34 = U3UH
4

(
U4UH

4

)−1

=⇒ T34 = S34S−1
44 with

{
S34 = 1

r U3UH
4 (CPS)

S44 = 1
r U4UH

4 (APS).

(5.31)

11In Roozen and Leclère (2013), it is suggested that external excitation on the source structure,
e.g. by use of a non-instrumented hammer, leads to better conditioning of the transmissibility
matrix compared to a sequence of operational excitations. This resembles the approach depicted by
Fig. 5.7b.
12The H1 estimator is a well-known principle in experimental modal analysis to determine FRFs
from a Multiple Input–Output (MIMO) test, see for instance, Bendat and Piersol (1980), Ewins
(2000). Alternative ways to obtain the transmissibility matrix have recently been explored, such as
the H2 or Hs estimator to balance the error contributions between the inputs and outputs (Leclère
et al. 2012).
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Equation (5.31) performs cross-talk cancelation similar to Eq. (5.27). Now that the
transmissibility matrix T34 has been estimated globally, the actual path contributions
can be analyzed for each measurement cycle. If performed correctly (i.e. all transfer
paths were included), the reconstructed response spectra equal the response spectra
that were measured directly.

u(l)
3 = T34u(l)

4 l ∈ {1, . . . , r}. (5.32)

The approach governed by Eqs. (5.30) and (5.32) is generally known as Oper-
ational Transfer Path Analysis (OTPA) (Noumura and Yoshida 2006). Clearly, the
performance of this method is subject to the choice and positioning of the indicator
sensors u4, that function as “inputs” to the analysis. Too few sensors (or too distant
from the source connections) could lead to neglecting important transmission paths,
resulting in unrealistic prognoses (Gajdatsy et al. 2008). On the other hand, having
too many sensors (or too near to each other) complicates the inversion of S44 due to
poor conditioning, resulting in amplification of measurement noise (Gajdatsy et al.
2008).

Theoretically, the rank of U4 is limited by the number of DoFs at the interface m.
This implies that U4 and thus S44 is rank deficient, even if r > n. It is therefore com-
mon practice to perform a Principal Component Analysis (PCA) in order to identify
how many independent modes of vibration are present in the system and transferred
across the interfaces. Principal components are calculated from the singular value
decomposition of U4. The left-singular vectors represent the vibration mode shapes
that build up to the vibrations in the indicator DoFs, sorted from the largest contribu-
tion to the smallest. By controlling the amount of principal components that are used
in the computation of the transmissibility by Eq. (5.32), the condition number can be
kept low such that one balances between the completeness of path descriptions and
attenuation of measurement noise. This is not discussed in detail here, guidelines can
be found in specific literature on OTPA (Noumura and Yoshida 2006; de Klerk and
Ossipov 2010; Putner et al. 2012).

Another strong advantage of OTPA is the ease of combining various types of
sensors, both for the input (indicator) and output (receiver) DoFs. Quantities such as
accelerations, velocities, sound pressures and even forces and strains can be used in
a mixed fashion, as long as proper scaling (unit normalization) is taken into account
(Noumura and Yoshida 2006). This makes OTPA a suitable method to quickly inves-
tigate the proportion of structure-borne and airborne contributions (de Klerk et al.
2009). Other related extensions or applications include ResponseModification Anal-
ysis (RMA) for providing structural sensitivities to the target responses (Scheuren
and Lohrmann 2014), pass-by analysis of road vehicle noise (Putner et al. 2013;
ISO Technical Committee 2015) and time domain auralization of OTPA, sometimes
referred to as Transfer Path Synthesis (TPS) (Vorländer and Dietrich 2008).
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5.6 Substructuring to Estimate Fixed-Interface Modes

Suppose that a structure of interest is attached to a flexible fixture. Suppose that
measurements can be performed on this assembly to measure the displacements at
several DOF on the substructure itself, denoted us , and on the fixture us . Similarly,
the fixture could be removed from the assembly and measurements were taken at
the same DOF on the isolated fixture ufixt f , where the subscript f could be omitted
since now all measurements must be on the fixture.

A modal test could be performed to obtain N modes of vibration of the assembly,
resulting in the modal parameters for the fixture+structure, ωr , ζr and [φT

f r , φ
T
sr ]T,

whereωr is the r th natural frequency of the structure, ζr is the corresponding damping
ratio and the vectors φ f r and φsr contain the mass-normalized mode vector of the r th
mode at the measurement points on the fixture and substructure, respectively. The
index r ranges over all of the measured modes, r = 1...N . The fixture is a dynamic
system itself, although it is meant to approximate a rigid boundary condition.

One can also obtain themodal parameters of thefixture alone (without the structure
of interest attached) either through test or analysis, and its modal parameters are
denoted:ωfixt

r , ζ fixt
r and φfixt

f r . The natural frequencies and damping ratios of the fixture
are not needed in any of the following, only the mass-normalized mode shapes of
the fixture.

If the fixture were truly rigid and perfectly fixed to ground, then the motion of
the structure when it is attached to the fixture, u f , would be zero. In practice this
will not be the case. The most straightforward remedy would be to estimate both
the displacement and rotation at the points where the structure joins the fixture and
then to apply constraints to force that motion to be zero. However, that method is
not reliable because, as will be illustrated in the examples presented in the lecture.
Instead, the following constraints are applied.

5.6.1 Modal Constraints

Themeasured fixturemotion, u f i xt , can be approximated as follows in terms of N f ixt

modes of the fixture:
ufixt ≈ φfixt

f qfixt, (5.33)

where qfixt denotes the modal coordinates of the fixture. This expression can be
inverted to find the participation of each fixture mode, as qfixt ≈ (

φfixt
f

)+
ufixt, where

()+ denotes the Moore–Penrose pseudoinverse of the matrix. The estimate of the
fixture modal amplitudes is only meaningful here if one has at least as many mea-
surement points as modes of interest and if the measurement locations on the fixture
are chosen such that φfixt

f has full column rank.



www.manaraa.com

208 5 Industrial Applications & Related Concepts

If the modal basis of the fixture is sufficiently rich, then it will be adequate to span
the space of the motion of the fixture even after the structure is attached (i.e., of the
fixture+structure). If this is the case, then the fixture modal motions can be estimated
from the measured motions, ufixt, as follows.

qfixt = (
φfixt

f

)+
u f = (

φfixt
f

)+
φ f q, (5.34)

whereq denotes themodal coordinates of the assembled fixture+structure. Our desire
is to estimate the modal parameters that the structure would have if it were attached
to a truly rigid fixture. One way to do this is to apply the constraints,

qfixt = 0 (5.35)

to the modes of the fixture+structure using the methods outlined in this course. In
terms of the modal coordinates of the fixture+structure, the constraint equations are

(
φfixt

f

)+
u f = 0 (5.36)

or (
φfixt

f

)+
φ f q = 0 (5.37)

either of which constitutes a set of N f ixt constraint equations. Thematrixmultiplying
q is the matrix B in this course and in the review by DeKlerk, Rixen and Voormeeren
(2008) or [a] in the text byGinsberg (2001). Theprocedure described in either of those
works can be used to enforce these constraints and hence to estimate the modes of the
fixture+structure with the fixture motion nullified. The “cms.m”MATLAB®routine,
which is freely available on the MATLAB Central File Exchange (search under
Matthew S. Allen) or in the materials provided with this course, implements the
method in Ginsberg (2001) and was used to perform the calculations described in
the lecture.

It is important to note that the constraints above only enforce zero motion at the
fixture measurement points if the number of measurement points equals the number
of fixture modes. In practice, one should use more measurement points on the fixture
than there are active modes in order to average out noise and measurement errors.
However, when this is done the motions of the physical measurement points may not
be exactly zero after applying the constraints. In the best case, the residual motion
would be due only to measurement noise, but there might also be residual motion in
the fixture that is physical, since one is seeking to constrain an infinite dimensional
system with a finite number of constraints. Fortunately, one can readily observe the
fixture motions after applying the constraints to see whether the constraints were
effective in enforcing a rigid boundary condition. This provides a valuable way to
check whether enough modes were used in Eq. 5.38.



www.manaraa.com

5.6 Substructuring to Estimate Fixed-Interface Modes 209

5.6.2 Singular Vector Constraints

In some cases, it may not be feasible to perform a modal test on the fixture alone in
order to estimate φfixt

f . There also may be situations in which the free modes of the
fixture do not form an efficient basis for the motion of the fixture+structure, so some
other basis must be considered. In these cases, one alternative is to use the dominant
singular vectors of the fixture mode shape matrix to form the constraints. The first
step is to perform a Singular Value Decomposition (SVD) of the fixture motions
observed on the fixture+structure

φ f = USVT (5.38)

whereU is amatrix of singular vectors, S a diagonal matrix of corresponding singular
values and V reveal how each singular vector participates in each of the modes. Both
U and V are orthonormal. If the motion of the fixture is sufficiently simple, then it is
likely to be captured in only a few, NSV D , dominant vectors, so one can approximate
the fixture motion as follows:

u f = UNSV DSNSV D (VNSV D )Tq, (5.39)

where the matrices now contain only the first NSV D columns or rows or both. The
following constraint will set this approximation to the fixture’s motion to zero,

(UNSV D )Tu f = 0. (5.40)

This is an alternative to the constraints in Eq. 5.38 and avoids having to measure the
modes of the fixture alone.

5.7 Payload and Component Simulations Using Effective
Mass and Modal Craig–Bampton Form Modal Models

The methods in the prior section can be extended and used to estimate Hurty/Craig–
Bampton models of subcomponents from measurements. In particular, for small
components a quantity of interest is the effective mass. In Sedaghati et al. (2003),
Mayes (2015), Mayes et al. (2013) and Mayes and Linehan (2014), a methodology
was developed and validated on several structures.

Consider a component mounted on a larger structure. If the structure is large, we
can consider the component to be subjected to a base acceleration that is independent
of the component’smotion. Then, theHCBmodel allows one to compute the effective
mass, which describes how much each of the fixed-base modes of the structure is
excited by the base acceleration. For example, if one considers a clamped–clamped
beamon a rigid foundation, then each symmetricmodewould be excited by a uniform
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motion of the base but asymmetric modes would not be. Hence, the asymmetric
modes would have zero effective mass and the symmetric modes’ effective mass
would vary depending on their propensity to be excited; typically, the lower modes
have higher effective mass. Such a model can be effective when seeking to determine
if a subcomponent survives a given environment.

Effectivemassmodels are usually derived fromfinite elementmodels, butmethods
were recently presented that can derive them experimentally (Mayes et al. 2013). To
do so, a test is performed with the component on a transmission simulator, with the
assembly free–free. Then the substructuringmethod in the prior section can be used to
constrain the transmission simulator to ground and estimate the fixed-interfacemodes
of the test article. Further processing steps yield the effective mass. See Sedaghati
et al. (2003), Mayes (2015), Mayes et al. (2013) and Mayes and Linehan (2014) for
further details.

5.8 Calibration of an SUV Rear Subframe

In the automotive industry, finalized products are commonlymade up of thousands of
components, which can, in turn, be made out of smaller components. Finite element
modeling is used to increasing extent to study these structures. This is because of the
flexibility the computer models bring in terms of analyzing structural modifications.
One modeling approach that is often taken is to divide the structure into parts and use
substructuring techniques. For an accurate modeling, it is then important to under-
stand the physics of every substructure and not to the least the physical behavior
of the interfacing parts through which the substructures are physically connected.
Many different connection types exist, where rubber bushings are commonly used
when vibration isolation is needed such as in the isolation of subframes from the
body in white. It is well known that the stiffness of rubber materials is tempera-
ture and frequency dependent and can exhibit large variation from one unit to the
next. Furthermore, good model characteristics for damping can be crucial for the
full model’s prediction quality. The damping is usually not modeled based on first
principles due to its complexity, but rather by calibration of models to experimen-
tally acquired data. Therefore, there is an interest in updating FE models toward
experimentally obtained data from vibration tests. A study, reported in Bylin et al.
(2018), Bylin (2018) and Gibanica and Abrahamsson (2017), has been conducted
using a rear subframe of a passenger car, see Fig. 5.9. It primarily concerned the
estimation of the bushing rubber material parameters in a mass- loaded boundary
configuration, but also to calibrate the rear subframe model in general. The model
calibration MATLAB application FEMcali (Abrahamsson 2019) was used as a tool
for calibrating the model parameters. By additive mass loading of the bushings in
an experimental modal analysis setting, the bushings are considerably activated and
bring local bushing modes down in frequency where it is possible to study them with
modal analysis. Furthermore, the additive mass loading provides a more realistic
boundary condition for the bushings. In Fig. 5.9, the two different bushing types are
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Fig. 5.9 Rear subframe location in the car and two bushing types of particular interest

shown and the mass loading component can be seen in Fig. 5.10 together with a
small region of an FE representation of the mass-loaded bushing.

Two finite element models are used, one with and the other without mass-loaded
bushings. The FE models of both configurations each consist of more than half
a million degrees of freedom. The calibration procedure minimizes the deviation
between the FE model’s frequency response functions and the experimentally iden-
tified model’s ditto. Equalized damping is imposed on both models to circumvent
the mode pairing problem. A bootstrapping cross-validation is further used to quan-
tify the parameter uncertainties. A SIMO stepped-sine testing procedure was used
to obtain test data. The FE model with mass loading was calibrated first to obtain
good parameter estimation of the rubber’s Young’s modulus, i.e., all other model
parameters were then fixed at their nominal values. The configuration without mass
loading was then calibrated with fixed calibrated rubber parameters for an overall
good parameter estimation of the rear subframe FE model. In the final step, a subset
of all parameters was updated toward a higher frequency region for the configuration
without mass loading to gain further physical understanding of the behavior of the
component.

Experimental modal analysis test setup. The vibration tests were performed
in the Vibration Lab at the Chalmers University of Technology. Three nominally
identical rear subframes of aVolvoXC90with andwithoutmass loadingwere used to
obtain data for the spread between individuals. The testing procedurewas the same for
all components. The rear subframewith andwithoutmass loading is illustrated in Fig.
5.11. The components were hung in long thin lines (red and thickened for visibility
in Fig. 5.10) attached to a support structure via soft springs. The support modes were
all below 5 Hz and were thereby well below the first flexible eigenfrequency that
appeared above 40Hz in both configurations.

With the target to obtain particularly good test data for the first 20 flexible body
modes, the position of 20 uniaxial sensor locations was found from a set of 170
candidate positionswith a sensor placement pretest planningmethod (Kammer 2005;
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Fig. 5.10 Rear subframe with additional weights fitted to four bushings in instrumented test con-
figuration (left). CAD illustration of additional weight (right)

Fig. 5.11 Top view of configurationwithout additional weights in a and bottom view in b. Top view
of mass-loaded configuration in c and bottom view in d. Circles mark accelerometer locations and
a rectangle marks the excitation position. Excitation was normal to the surface, with a direct accel-
erance force and accelerometer sensor configuration. Green (uniaxial) and yellow (triaxial) circles
represent accelerometer locations common for both configurations. Cyan (without weights) and red
(with weights) markings indicate triaxial sensor positions that differ between the configurations
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Gibanica et al. 2016). Six more uniaxial accelerometer positions were added for
visualization purpose. Ten additional triaxial accelerometers were placed on the
bushings.All sensor placements can be seen in Fig. 5.11. In the colocated and colinear
force/acceleration sensor configuration, the accelerometer and force transducer was
placed on the opposite side of a thin sheet metal part of the subframe. Accelerometers
9–36 (numbering; see Fig. 5.11) were placed identically on both configurations while
accelerometers 1–8 were placed directly on the bushings in the configuration without
added weights and these were instead placed on the additional weights in the mass-
loaded configuration. The triaxial accelerometers were PCB 356A03 (1 gram, glued)
and the uniaxial were PCB 352C22 (0.5 gram, beeswax fastened). The accelerometer
masses were included in the FEmodels. The shaker was an LDSV201 attached to the
subframe via a metallic stinger of approximately 5 mm length. The excitation force
was measured with a Brüel&Kjær 8203 force sensor together with an B&K IEPE
converter 2647B, attached to the component through a glued stinger attachment plate
with 0.2 gramsweight. The force transducer and stinger attachment platemasseswere
not included in the FE models.

Two excitation methods were used for both configurations. Periodic chirp tests at
various amplitudes were performed to assess the linearity of the systems to obtain
proper excitation loads. Most test data used for calibration were collected with multi-
sine tests for diminishing the influence of noise in the model updating procedure.
For the mass-loaded configuration, a frequency range (40,500) Hzwith 2000 discrete
frequencies was deemed sufficient due to the relatively strong damping. In the con-
figuration without added weights, a frequency range (60,500) Hz with 3000 discrete
frequency were used instead. The discrete frequencies were selected based on the
method specified in Vakilzadeh et al. (2015) to minimize system identification model
bias.

The calibration procedure used gives a parameter setting that minimizes the devi-
ation between the FE model and an identified state-space system model, and thus
indirectly from raw test data through the identified model. It is therefore crucial for
the system identification model to be of high quality. For the configuration without
mass loading, all accelerometers were used in the identification, from 60 to 350 Hz
with 20 states. Low- and high-frequency residual modes were added to the obtained
system and the state-spacemodel’sB andCmatriceswere augmentedwith additional
data from chirp measurements for the low-frequency region from 20 to 60 Hz and
stepped-sine data for the high-frequency region from 350 to 470 Hz. This produced a
system that accurately predicted the system’s resonance and antiresonance behavior.

For the mass-loaded configuration, only the bushing accelerometers, accelerom-
eters 1 through 8 in Fig. 5.11, were used initially for the system identification due to
the many local bushing modes identified from the measurements, not visible in other
channels. Thus an identified system with 40 states from 40 to 225 Hz was identified
for 24 channels (8 first triaxial accelerometers). A low- and high-frequency resid-
ual system pole was added to the system and additional data from a chirp test from
20 to 40 Hz and stepped-sine test from 225 to 250 Hz was used to reestimate the
system’s B and C matrices by the procedure given in Sect. 4.9.1. In addition, all 36
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accelerometers, or 56 channels, throughout the frequency region from 20 to 250 Hz
were used in the reestimation for a system with more system outputs.

The raw data from the channels for which the system identification model gave
the poorest fit were used as validation data in a validation procedure. The calibration
channels selected from the 56 available channels for the mass-loaded configuration
were 1x, 1z, 2x, 2z, 3x, 3z, 4x, 4z, 5x, 5z, 6x, 6y, 6z, 7z, 8x, 8z, 9x, 11, 12, 16, 17, 18,
20, 21, 22, 25, 26, 28, 29, 33, 34, 35, 36, see Fig. 5.11. For the configuration without
mass loading the following set was selected: 1x, 1y, 1z, 2x, 2y, 2z, 3x, 3y, 3z, 4x,
4y, 4z, 5y, 5z, 6y, 6z, 8z, 10x, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36. Approximately, 60% (with mass loading) and
75% (without mass loading) of the channels were used for calibration.

The finite element model. The rear subframe FE model consists mainly of shell
elements and rubber bushings modeled with an isotropic linear material model with
solid elements. It holds over 600,000 degrees of freedom. The same FE model was
used in the mass- loaded boundary configuration where four additional rigid compo-
nents was attached to the bushings to represent the additional weights. The additional
weights were designed to be simple to model with high accuracy. They consist of
cylinders with two different outer radii dimensions with a through hole to allow for
a through bolt. They were made of steel and each weight was of 1 kg total mass
and were attached with bolts to each bushing of interest (four of the subframe’s six
rubber bushings) of the subframe. MSC Nastran was used to establish the mass and
stiffness matrices of the FE models.

Calibration parameter selection. In the mass-loaded configuration, only the
rubber stiffness parameters were used in the calibration and all other model param-
eters were fixed to their nominal values. The parametrization for the four bushings
can be seen in Fig. 5.12. For the configuration without mass loading, 10 additional
free parameters were selected which are shown in Fig. 5.12b through d. All other
FE model data were fixed to their nominal values. Two parameter types were used,
material stiffness and shell element thickness. The inverse Fisher InformationMatrix
(FIM) (Kay 1993) was used in an identifiability analysis to fix parameters that would
render the calibration problem unidentifiable. From this study, it was found that
parameter p12 was only marginally identifiable and could be fixed. In the deter-
ministic calibration, most parameters were bounded to stay within 25% from their
nominal setting.

Calibration results. The nominal and updated parameters from the deterministic
calibration, and the mean value and Coefficient of Variation (COV %) from a cross-
validation are shown in Table 5.1. The table column order illustrates the calibration
order, i.e., mass-loaded configuration first followed by the configuration without
mass loading up to 265 and 350 Hz in the second and final step, respectively. Thus,
three calibrations were performed in total. Fields with (–) or (←) denote parameters
that were fixed in that particular calibration.

In an initial step, the mass-loaded configuration was calibrated from 40 to 225 Hz
so that the bushings rubber stiffness could be estimated, i.e., parameters p1 to p4. All



www.manaraa.com

5.8 Calibration of an SUV Rear Subframe 215

Fig. 5.12 Parameterization of the FE models with E representing stiffness and t thickness, in a
for the mass loaded configuration and in b, c, and d for the configuration without mass loading.
Parameters p1 through p4 were also parameterized in the configuration without mass loading

other parameters were at this stage fixed to their nominal values, where parameters
p12 to p14 were set to 1.20 mm. These four parameters were manually updated to
a nominal setting of 1.40 mm in the calibration of the configuration without mass
loading.

The configuration without mass loading was first calibrated from 60 to 265 Hz,
with updated bushing parameters, by updating parameters p5 to p11. Updated param-
eters p5 to p11 were then used as nominal parameters in the final calibration from 60
to 350 Hz where parameters p1, p2, p10, p13, p14 and p15 were updated. Parameter
p12 was kept fixed in all three calibrations.

InTable 5.1, it can be seen that themean value of the cross-validation results, based
on 20 data splits with raw test data and unconstrained minimization, differ somewhat
from the deterministic calibrated estimates. There are significant noise levels in the
raw test data, especially noticable around the low-frequency antiresonances for some
channels (see Figs. 5.13 and 5.14) that might affect the cross-validation results.
Furthermore, the identified model used in the calibration does not perfectly fit test
data in all channels, especially around the antiresonances (see again Fig. 5.13), and a
difference between calibration and cross-validation results is therefore to be expected.
The parameters show little variation, as indicated by the COV in Table 5.1, with
parameters p9, p10, and p11 for calibration FE265 varying more than than the others,
approximately from 3 to 6%.

It can be seen in Table 5.1 that the two calibrated stiffness parameters p1 and
p2 in the mass-loaded configuration, (see Fig. 5.12a), are considerably higher than
p3 and p4. This is a consequence of making the FE model fit experimental data so
that the FE modes as shown in Fig. 5.15 fit the eigenfrequency order of that was
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Table 5.1 Nominal parameters (Nom) along with three calibration results. Calibrated parame-
ters for the mass-loaded configuration denoted FEmass , configuration without mass loading with
calibration up to 265 Hz denoted FE265 and up to 350 Hz denoted FE350. Themean value and coef-
ficient of variation (%) of the cross-validation is denoted with superscriptsμ andCOV. Empty fields
(–) represent fixed parameters in that particular calibration and left arrows (←) point to numerical
data used in that calibration. E represent Young’s modulus and t denote plate thickness
# Param Nom FEmass FE265 FE350 FEμ

mass FECOV
mass FEμ

265 FECOV
265 FECOV

350 FECOV
350

p1 E
(MPa)

5.00 4.01 ← 4.62 3.67 0.72 – – 4.98 0.39

p2 E 5.00 3.82 ← 7.01 3.48 0.85 – – 5.25 0.11

p3 E 5.00 2.83 ← 5.83 2.69 0.94 – – – –

p4 E 5.00 2.41 ← 5.41 2.94 1.19 – – – –

p5 E
(GPa)

210. ← 192.3 ← – – 196.4 0.99 – –

p6 E 210. ← 208.0 ← – – 198.9 0.13 – –

p7 E 210. ← 240.7 ← – – 228.6 0.09 – –

p8 E 210. ← 222.4 ← – – 249.1 1.73 – –

p9 E 210. ← 250.8 ← – – 264.4 3.86 – –

p10 E 210. ← 166.6 ← – – 162.6 3.10 189.2 0.10

p11 t (mm) 1.80 ← 1.46 ← – – 1.35 5.81 – –

p12 t 1.40 1.20 1.40 ← – – – – – –

p13 t 1.40 1.20 1.40 3.67 – – – – 2.56 0.71

p14 t 1.40 1.20 1.40 1.81 – – – – 1.75 1.12

p15 t 1.40 1.20 1.40 1.61 – – – – 1.80 0.74

Fig. 5.13 Cross-accelerance for input at position 24 and output at 4x. Note that raw test data and
data from identified model almost are almost coincident
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Fig. 5.14 Cross-accelerance for input at position 24 and output at 30

Fig. 5.15 The nominal model with mass-loaded bushings (a) along with the 11 first calibrated
flexible modes, from mode 1 (b) to mode 11 (l). Blue indicate small motion and red large motion

found in experimental data. This is possibly caused by a nominal model inadequacy
given that the bushings are different for these two sets of parameters, i.e., p1 and p2
correspond to bushing of Type 2 shown in Fig. 5.9 while p3 and p4 correspond to
bushing of Type 1. The calibration results indicate that bushings of Type 2 are less
stiff than bushings of Type 1.
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Table 5.2 Mass-loaded and massless configurations’ experimental eigenfrequencies denoted
Expmass and Exp, respectively. Nominal FE models for the two configurations denoted with super-
script nom. Other notations as in Table 5.1. � fmass (%) represent the relative difference between
FEmass and Expmass, and � f265 and � f350 the relative differences between Exp and FE265 and
FE350, respectively. Total mass of the different models are shown in bottom row
Mode Expmass FEnom

mass FEmass � fmass Exp FEnom FE265 � f265 FE350 � f350

1 40.95 46.45 41.62 1.64 76.82 78.20 76.86 0.05 76.90 0.10

2 – 48.16 42.92 – 160.54 158.18 160.53 0.01 160.63 0.06

3 52.07 53.92 51.95 0.23 193.08 194.63 193.13 0.03 192.62 0.24

4 59.12 78.60 61.00 3.18 195.25 196.97 195.40 0.08 196.24 0.51

5 63.21 80.03 62.92 0.46 204.94 207.37 206.29 0.66 205.59 0.32

6 66.07 82.50 65.58 0.74 210.84 208.84 210.84 0.00 210.71 0.06

7 – 84.96 67.92 – 240.93 241.10 239.62 0.54 240.13 0.33

8 71.84 86.42 70.26 2.20 254.36 254.27 253.34 0.40 255.99 0.64

9 74.64 88.03 71.90 3.67 – 293.76 268.52 – 290.45 –

10 110.59 116.27 111.26 0.61 306.89 304.23 278.47 9.26 310.18 1.07

11 118.19 126.17 117.79 0.34 320.09 316.98 304.01 5.02 315.46 1.45

Mass 37.18 37.01 37.01 26.80 26.73 26.51 26.87

In Table 5.2, the eigenfrequencies of the first eleven flexible modes are shown
for the configuration with and without mass loading, along with their masses. It can
be seen that for the mass-loaded configuration the nominal results are very different
from what is experimentally identified. It should be noted that mode 2 is very close
to mode 1 in the experimental data and could not be identified, as indicated by the
FE modes show in Fig. 5.15b, c. The same holds for modes 6 and 7, shown in Fig.
5.15g and h. FE results indicate that modes 4 and 5, and also modes 8 and 9 almost
coalesce, as seen from their mode shapes shown in Fig. 5.15. The calibrated FEmass

has a much better correspondence to experimental data compared to the nominal
model FEnom mass which is also indicated by the deviation metric. The deviation
metric between the experimental data Expmass and the nominal FE model FEnom

is 0.90 and 1.02 for the calibration and cross-validation models, respectively. The
calibrated model gives a deviation metric of 0.44 and 0.50 for the calibration and
cross-validation data, respectively. Thus an improvement of 51% is seen in both the
calibration and cross-validation metrics.

Table 5.2 indicate that eigenfrequencies of the nominal configuration without
mass loading, FEnom, correlates rather well with those of the experimental model.
However, the modal assurance criterion (MAC, see Ref. Allemang and Brown 1982)
analysis results reported in Fig. 5.17 show that there are mode switches between
modes 3 and 4, and modes 5 and 6. Also, some modes show a very low MAC
correlation and the last two modes have a high cross-correlation. The updated model
FE350, forwhich theMACanalysis is shown in Fig. 5.17b, shows amuch betterMAC
correlation, even for the modes above 300 Hz. It can be noted that the FE analysis
indicates that there is a mode, not identified in the experiments, around 290 Hz. It
is shown in Fig. 5.16j where it can be seen that in that mode the motion is strongly
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Fig. 5.16 The nominal model without mass-loaded bushings (a) along with the 11 first calibrated
flexible modes, from mode 1 (b) to mode 11 (l)

Fig. 5.17 MACcorrelation between the experimentally identified systemand the nominal FEmodel
FEnom (left) and identified system and the calibrated FE model FE350 (right)

localized to one bushing (upper left). It is therefore just marginally controllable from
the input position far away from the bushing. Also, due to strong damping in the
bushing modes, it would be very hard to identify it from the raw frequency response
data of the used sensor set. Further in Fig. 5.16, it can be seen that in the two modes
above 300 Hz that the bushings are considerably activated. In order to capture the
behavior of the thesemodes, the stiffness parameters p3 and p4 of the rubber bushings
were again used as free parameters in the last calibration step, FE350. A justification
for this is that rubber has frequency dependent stiffness properties, i.e., its stiffness
increases with frequency (see Ref. Jones 2001). In the mass-loaded configuration,
the calibration focus is more on the lower frequency spectrum as compared to that
of the calibration without mass loading.
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The intermediate calibration step FE265 does not show a good correlation for
modes above the 8:th flexible modes, as seen in Table 5.2. This is due to that modes
above 265 Hz are not included in the model calibration.

The deviation metric for the intermediate model FE265 was improved by 60%
(from 0.91 to 0.38) after the calibration. The validation metric was improved with
23% (from 1.25 to 0.97). It should be noted that the model from which FE265 was
calibrated started from a model with updated bushing parameters from the previous
calibration step, and that this is reflected in the deviationmetric. The deviationmetric
for the final model calibration FE350 was improved with 71% (from 0.88 to 0.26)
for the calibration. The calibration of this model started from the parameter settings
of model FE265, with exception of parameters p3 and p4 that was set according
to above. The validation metric was improved with 33% (from 1.20 to 0.81). The
improvement in the validation metric is lower compared to that of the calibration
metric. One reason for this is likely that poorer frequency response test data were
used as validation data. In Fig. 5.13, one of the better channels is shown for raw test
data, the identified model, the nominal FE model, and the calibrated FE model up to
265 and 350Hz. Figure5.14 depicts one of the poorer channel estimates.

5.9 Coupling of Two Major SUV Components

In a study of experimental substructure coupling, a high-modal-count Body inWhite
(BiW) (see Fig. 5.18) was coupled to a moderate-modal-count Rear Subframe (RSF)
of same type as treated in the previous chapter (see Fig. 5.10). The physical coupling
between the two is via four rubber bushings that provide vibration isolation. The
vibration testing was performed with the BiW and RSF component stand-alone to
get component data. Testing was also done of the full BiW-RSF assembly to get
validation data. The coupling procedure was to

• Make vibration testing of the two components.
• Make system identification to create state-space models of the two.
• Keep the state-space model of the BiW as-is as attempts to calibrate a BiW FE
model was found to require more resources than were available.

• Do model calibration of the finite element model using the state-space model of
the RSF and take that to state-space form.

• Do a transformation of the state-space models to coupling form and do the cou-
pling.

• Validate the coupling outcome by comparing with test results of the BiW-RSF
assembly.

These steps are detailed below.
Vibration testing of the components. Testing of the BiWwasmade with dummy

adapters at the four coupling points (see Fig. 5.19). These adapters were aluminum
cylinders with similar geometry as the vulcanized aluminum part of the rubber bush-
ings mounted to the RSF. The adapters were fitted with three triaxial accelerometers
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Fig. 5.18 Body in White chassis of a Volvo XC90 resting on rubber cushions (at yellow arrows)
ready for vibration testing. Loose rear subframe resting on lab floor in front

Fig. 5.19 Location of dummy adapters C1 through C4 under rear part of BiW (left). Location of
virtual points C1 through C4 on RSF fitted to BiW (right)

Fig. 5.20 Location of BiW-mounted accelerometers 1 through 22. Coupling adapters C1 through
C4 have three triaxial accelerometers and are subjected to three successive SIMO stimuli tests each.
Accelerometer numbers in rectangles also indicate location of validation stimuli
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Fig. 5.21 Subframe with positions of accelerometers marked. Circle markings are for triaxial
accelerometers and the rectangular marking is for one uniaxial accelerometer and the input force
position

Fig. 5.22 Adapters C1 through C4 equipped with triax accelerometers (left). Location vectors r1
through r3 indicate kinematical transformation to virtual point C1 (right)

each to provide sufficient information about the motion of the stiff adapters in a
stepped-sine vibration testing. Besides the 4 × 3 × 3 = 36 sensor channels of the
triaxial accelerometers, an additional 22 uni-axis accelerometers were spread out
over the chassis (see Fig. 5.20). The signals of the triaxial accelerometers were trans-
formed to provide estimates of the translational and rotational motion of so-called
virtual points associated with each adapter (see Fig. 5.22). Its three translation and
three rotations were obtained by least squares fitting and kinematic transformations
on the nine signals from its sensors. The system stimulus was provided with a roving
shaker that provided 4 × 3 = 12 force inputs to the adapters in 12 repeated SIMO
experiments to give frequency response data. Two additional excitation points were
used for validation purpose. The chassis was put on soft rubber cushions to mimic
free–free boundary conditions during testing. Test data indicated at least 136 flexible
body modes below 200Hz for the BiW.
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Fig. 5.23 Experimental FRF and ditto synthesized from identified state-space model of BiW

The testing procedure outlined in Sect. 5.8 was used to get data for the RSF in two
configurations, one with free bushings and one with mass-loaded bushings. Testing
with mass-loaded rubber bushings was crucial for obtaining good calibration for the
rubber material properties. Since the main purpose of the bushings is to provide good
vibration isolation it is safe to say that the material parameters of the rubber are of
utmost importance for a successful coupling procedure. Since the rubber bushings
are parts of the RSF, the translational and rotational dynamic stiffnesses of these parts
are accounted for. The virtual points for coupling are included as nodes in the finite
element model and provide input and output information of the FE-based state-space
model of this component. Test data indicated about 40 flexible body modes below
200Hz for the RSF.

Make state-space system identification of BiW. Preliminary identification
results indicated that direct accelerance FRF data were particularly troublesome
in the state-space model fitting. As the direct dynamical stiffness associated to the
coupling degrees of freedom plays an important role in the coupling, increased effort
was put in obtaining a good state-space model for these. A procedure given in Ref.
Gibanica et al. (2018) was followed. The procedure is based on observation from
direct accelerance measurements. These observations indicate that strong outside-
band eigenmodes strongly affects the frequency response within the frequency band
of interest in the testing. In comparison with more traditional approaches that com-
pensate for outside-band low frequency modes with a residual mass model and high
frequency modes with a residual stiffness model, the procedure is to add virtual sys-
tem poles (residual states) just outside the frequency range of interest to compensate
for the effect of outside-band modes just above the upper frequency of interest. The
effect of residual states was identified by linear regression to test data. The influ-
ence of these states was first removed from test data before a traditional State-space
Subspace Identification method (N4SID) was applied and then superimposed to the
identified model to get a higher order state-space model with a very good fit to data,
see Fig. 5.23 for one specific transfer function. An assessment of all transfer functions
is reported in Fig. 5.24 which utilizes the FRAC correlation metric defined as

FRACi j = |
K∑

k=1

H A
i j (ωk)(H

X
i j (ωk))

H |2/(
K∑

k=1

|H A
i j (ωk)|2

K∑

k=1

|HX
i j (ωk)|2) (5.41)
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Fig. 5.24 Model fit (by FRAC) of BiW state-space model in range (30,200) Hz. Stimuli locations
are three forces at each cylinder C1 through C4 and at locations 21 and 22. Responses stem from
same locations but also from accelerometers 1 through 20

Fig. 5.25 Model fit (by FRAC) of coupled model in range (30,200) Hz

for which a perfect fit between test data from the tested assembly and the synthesized
system would render a value of 1 (one).

Physically motivated constraints on reciprocity were imposed by averaging off-
diagonal elements of the raw test data transfer function matrices. Also, in order to
fully couple components that share the same translation and rotational motion at
their mutual interfaces, all translation and rotation outputs and corresponding force
and moment inputs must be available at the coupling points. Since the test lacks
moment input, the transfer functions related to moment input have to be estimated
by through a modal system expansion, see paper E of Liljerehn’s doctoral thesis
(Liljerehn 2016). For comparison, the coupling was performed with and without the
rotational couplings, see Fig. 5.26.

Make state-space system identification of RSf and calibrate its FE model. The
system identification from RSf data and the proceeding calibration of the RSf finite
element model were conducted along the lines described in Sect. 5.8. In particular,
the stiffness parameters of the rubber bushings were much reduced in comparison to
the nominal parameter configuration.
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Fig. 5.26 An example of an FRF of the coupled system; the receptance from input at 22 to response
at 12. TR denotes results obtained with full coupling (translations and rotations) while T denotes
results obtained with translational coupling only

Do transformation of state-space models. The numerical linear algebra oper-
ations given by Eqs. (4.42) and (4.43) were performed to transform the state-space
models of the two components into coupling form.

Validate the coupling by comparing coupled model with test results. The
overall quality of the synthetic frequency response function is evaluated with FRAC
correlation. The results for all transfer functions can be seen in Fig. 5.25. It can be
noted that the synthesized FRF:s associated with stimulus on the subframe (see Fig.
5.21 at location S1), in general, render somewhat poorer correlations than the others.
An example of a transfer function is given in Fig. 5.26.
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Chapter 6
Model Reduction Concepts
and Substructuring Approaches
for Nonlinear Systems

Abstract This chapter reviews common nonlinearities that are encountered in engi-
neering structures, with a particular emphasis on geometric nonlinearity. Popular
ways to construct reduced order models for geometrically nonlinear problems are
discussed. The concept of nonlinear normalmodes is presented to help understand the
dynamics of these structures, and some recently presented substructuring methods
are reviewed. —Chapter Authors: Matt Allen & Paolo Tiso.

6.1 Geometric Nonlinearities

Up to here, all the developed theory considered systems in their linearized form—that
is, the interest focused on small dynamic deviations from the equilibrium. In fact,
any engineering system is inherently nonlinear, and is often just designed to operate
in the linear regime. In other cases, one might want to exploit nonlinear responses to
achieve a certain performance. In either case, the nonlinearities need to be properly
assessed with the aid of numerical models. Nonlinearities can be classified into three
broad categories, namely

1. Boundary condition nonlinearities, arising from changing constraints to the sys-
tem. Typically, this involves contact between subcomponents of the same system,
between two or more different systems, or the system and an external boundary.

2. Material nonlinearities, which are due to any nonlinearity present in the consti-
tutive law, which relates strain and stress rates. Typical examples are plasticity,
hyperelasticity, progressive damage, etc.

3. Geometric nonlinearities, arising from the redirection of the internal stresses
due to finite rotations. This type of nonlinearity is particularly present in thin-
walled, lightweight constructions, where geometric nonlinearities cause coupling
between bending and stretching deformations. Likewise, geometric nonlinearities
arise in multibody systems, where the components are subjected to holonomic
constraints that establish nonlinear mappings between displacements and gener-
alized coordinates.

© CISM International Centre for Mechanical Sciences 2020
M. S. Allen et al., Substructuring in Engineering Dynamics,
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Fig. 6.1 2D beam
kinematics

Being the realm of nonlinearities so vast, one cannot devise a general method for
the efficient reduction of any given nonlinear system. Here, we limit ourselves to
the relevant case of geometric nonlinearities. Apart from the richness in dynamic
behavior, one could expect from a geometrically nonlinear system, it is important to
highlight here that geometric nonlinearities are smoothwith respect to the generalized
displacements. This important property is a key aspect for many of the reduction
methods discussed in this chapter.

6.1.1 2D Beam

In this section, we briefly review the nonlinear beam theory in 2D, and discuss
a widely used approximation, namely the von Karman kinematic model (i.e. see
Figs. 6.1 and 6.2). We start by assuming a straight, two-dimensional beam, with a
rigid cross section, able to undergo arbitrary large displacements and rotations. The
material is assumed linear and elastic, and the elastic strains small. The interested
reader could refer, for instance, to Woinowski-Krieger (1950).

The displacement field is indicated by U = [u;w], where u and w are axial and
transversal displacements, respectively. Upon an arbitrary deformation of the beam,
we can write

U = uex + wez + [R(θ) − I]zez = 1

2

(
FTF − I

)
, (6.1)

where R(θ) is the rotation matrix of the cross section, I is the identity matrix, and F
is the deformation gradient. The Green–Lagrange strain tensor is then written as

ε = 1

2

(∇U + ∇TU + ∇TU · ∇U
)
. (6.2)
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Fig. 6.2 von Karman beam
in deformed configuration
under distributed load

The polar decomposition theorem allows to split the deformation gradient F into
rotations and deformations as

F = R(θ)(I + L) ⇒ ε = 1

2

(
L + LT + LTL

)
. (6.3)

Linearizing the strains leads to

ε ≈ 1

2

(
L + LT

) =
[
e − zk γ

γ 0

]
, (6.4)

where the axial strain e, the shear strain γ and the curvature k are, respectively, given
by

e = (1 + u′) cos θ + w′ sin θ − 1 (6.5)

γ = −(1 + u′) sin θ + w′ cos θ (6.6)

k = θ ′, (6.7)

where �′ = ∂�
∂x . By adopting a linear, elastic model as

ε = 1 + ν

E
σ − ν

E
tr(σ )I (6.8)

the resulting cross sectional forces are

N = E Ae, (6.9)

T = GAγ, (6.10)

M = E Ikθ ′, (6.11)

where N , T , andM are the axial force, shear force, and bendingmoment, respectively.
The Young’s modulus is indicated by E , the shear modulus by G, the cross-sectional
area by A and the bending moment of inertia by I .

By using the virtual work principle, the equations of motion are found as

ρAü = (N cos θ − T sin θ)′ (6.12)

ρAẅ = (N sin θ + T cos θ)′ + q (6.13)

ρ I θ̈ = T (1 + e) − Nγ + M ′ (6.14)

N = E A[(1 + u′) cos θ + w′ sin θ − 1] (6.15)
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T = GA[−(1 + u′) sin θ + w′ cos θ ] (6.16)

M = E Iθ ′, (6.17)

where q is the distributed transversal load per unit length. Note that these equations
are valid for any arbitrary cross section rotation θ . This set of equations is highly
nonlinear and therefore of difficult numerical solution. In many applications, the
system operates in the mild nonlinear range—that is to say, that the order of the
nonlinear terms is the same as that of the linear terms. If this holds, the above model
can be expanded and only the significant terms of the expansion need to be retained.
This is discussed in the next section.

6.1.2 von Karman Model

We further adopt here the Euler–Bernoulli assumptions, namely

• negligible shear deformation (γ ≈ 0);
• no axial and rotary inertia are considered;
• moderate cross section rotations, i.e., cos θ ≈ 1 − θ2

2 , sin θ ≈ θ .

The strains then become

e = (1 + u′) cos θ + w′ sin θ − 1 ⇒ e ≈ u′ + 1

2
w′2 (6.18)

γ = −(1 + u′) sin θ + w′ cos θ ⇒ θ ≈ w′. (6.19)

This is to say that the axial strain e is not only determined by the derivative of the
axial displacement u but also by the square of the rotation θ of the cross section.
Note also that by assuming ü ≈ 0, (6.12) yields

N ′ = 0, (6.20)

that is to say that the axial force is constant along the length of the beam, and given by

N = E A

(
u′ + 1

2
w′2

)
. (6.21)

The equations of motion then become

N ′ = 0 (6.22)

ρAẅ − E Iw′′′′ − Nw′′ = q (6.23)

T = −M ′ (6.24)

M = E Iw′′ (6.25)
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Fig. 6.3 The bending–stretching coupling effect resulting from finite bending displacements

N = E A

(
u′ + 1

2
w′2

)
, (6.26)

equipped with boundary conditions. Note that the presence of N creates a nonlinear
restoring term that depends both on u andw. This effect is known as string effect, and
it is illustrated in Fig. 6.3. Here we can distinguish between two situations, namely:

1. axially unmovable ends: u(0) = u(L) = 0;
2. free ends: N (0) = N (L) prescribed.

Unmovable Ends

In this case, the axial displacement can be integrated along the length of the beam,
to give the axial force N (t) as

N (t) = E A

2L
w′′

∫ L

0
w′2dx (6.27)

when plugged into the governing equation for the transverse displacement w, one
obtains

ρAẅ − E Iw′′′′ − E A

2L
w′′

∫ L

0
w′2dx = q. (6.28)

Note that the nonlinear term is a cubic function ofw′, and represents the string effect.
This term is responsible for the hardening of softening behavior of the structure when
subjected to external loads.

Free Ends

In this case, the value of N is prescribed, and therefore the additional stiffness term
in the governing equation is linear:

ρAẅ − E Iw′′′′ − Nw′′ = q. (6.29)
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As a consequence, no bending–stretching coupling occurs, and the von Karman
model is linear. Thus, in the case of beams with free axial ends, a model including
higher order terms in rotations (“large rotation” model) is required.

6.2 Finite Element Discretization

Consider the 2-node, 2D beam element sketched in Fig. 6.4. The nodal degrees of
freedom can be partitioned into axial and out-of-plane as u = [u1, y2]T and u =
[w1, θ1,w2, θ1]T . The value of u and w within the element are given by the shape
functions as

u = hT
u u, w = hT

ww, (6.30)

respectively, where the shape functions are given by

hT
u = 1

2
[1 − ξ, 1 + ξ ] , (6.31)

hT
w = 1

8

[
4 − 6ξ + 2ξ 3, L(ξ 2 − 1)(ξ − 1), . . .

4 + 6ξ − 2ξ 3, L(ξ 2 − 1)(ξ + 1)
]
, (6.32)

and ξ = 2x
L − 1. The axial force N is then given by

N = E Ae = E A

(
bT
u u + 1

2
(bT

ww)2
)

, (6.33)

where bu = dhu
dξ

and bw = dhw
dξ

. Likewise, the bending moment M is given by

M = E Ik = E IcTw, (6.34)

Fig. 6.4 A 2D planar beam
element
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where c = d2hw
dξ 2 . By using the virtual work principle, the nodal internal forces can be

found. The axial contribution Ui is given by

Ui =
∫ L

0
Nbudx =

∫ 1

−1
Nbu

L

2
dξ, (6.35)

while the bending contribution Wi is given by

Wi =
∫ L

0

(
N (bT

ww)bw + Mc
)
dx =

∫ 1

−1

(
N (bT

ww)bw + Mc
) L

2
dξ. (6.36)

Note that the axial forces Ui is quadratic and depends both on in-plane and out-
of-plane deformations, while Wi is cubic. The tangent stiffness matrix is readily
obtained by differentiating the internal nodal forces with respect to the nodal dofs,
as

K =

⎡

⎢⎢⎢
⎣

∂Ui

∂u
∂Ui

∂w

∂Wi

∂u
∂Wi

∂w

⎤

⎥⎥⎥
⎦

=
[
Kuu Kuw

Kwu Kww,

]
(6.37)

where

Kuu =
∫ L

0
E AbubT

u dx (6.38)

Kuw = KT
wu =

∫ L

0
E A(bT

ww)bubT
wdx (6.39)

Kww =
∫ L

0
E I (ccT + E AbT

ww)2bwbT
w + NbwbT

wdx . (6.40)

6.3 Galerkin Projection

After FE discretization, the motion of the system is governed by a system of second-
order Ordinary Differential Equations (ODEs), together with the initial conditions
for generalized displacements and velocities, which reads

Mü(t) + Cu̇(t) + f(u(t)) = g(t) ,

u(t0) = u0, u̇(t0) = v0, (6.41)

where the solution u(t) ∈ R
n is a high-dimensional generalized displacement vector,

M ∈ R
n×n is the mass matrix, C ∈ R

n×n is the damping matrix, f : Rn �→ R
n gives

the nonlinear elastic internal force as a function of of the displacement u of the
structure, and g(t) ∈ R

n is the time-dependent external load vector. In our case, the
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nonlinear term f(u) models the effect of geometric nonlinearities, as discussed on
the previous section. The system (6.41) is usually referred to as the High Fidelity
Model (HFM), which solution can be extremely time consuming to compute if the
dimension n of the system is large. The classical notion of model reduction aims
to reduce this dimensionality by introducing a linear mapping on to a suitable low-
dimensional subspace V as

u(t) ≈ Vq(t) , V ∈ R
n×m, (6.42)

where q(t) ∈ R
m (m 	 n) is the low-dimensional vector of reduced variables, and

V is known as the reduction basis. Upon substitution of (6.42) in (6.41), one obtains

MVq̈(t) + CVq̇(t) + f(Vq(t)) = g(t) + r(t), (6.43)

where r(t) is a residual vector. The ROM is then obtained using Galerkin projection,
which requires the residual to be orthogonal to the subspace span V spanned by V,
i.e., posing VT r = 0. This leads to

VTMV︸ ︷︷ ︸
M̃

q̈(t) + VTCV︸ ︷︷ ︸
C̃

q̇(t) + VT f(Vq(t)) = VT g(t),

where M̃, C̃ ∈ R
m×m are the reducedmass and dampingmatrices, respectively.Often,

the internal force can be split into its linear and nonlinear contributions as f(u) =
Ku + fnl(u), to obtain a reduced stiffness matrix as well as

M̃q̈(t) + C̃q̇(t) + VTKV︸ ︷︷ ︸
K̃

q(t) + VT fnl(Vq(t))
︸ ︷︷ ︸

f̃(q(t))

= VT g(t). (6.44)

As for the case of linear models, the reduced matrices M̃, C̃ and K̃ can be pre-
computed in the offline stage prior to time integration. In other words, during time
integration (online phase), the computational cost associated to the evaluation of the
linear terms in (6.44) scales only with the number of reduced variables m. Unfortu-
nately, this is not the case for the computation of the nonlinear term f̃(q(t)).

For FE applications, this nonlinear forces are usually evaluated as follows:

f̃(q) = VT fnl(Vq) =
ne∑

e=1

VT
e fe(Veq), (6.45)

where fe(ue) ∈ R
Ne is the contribution of the element e toward the vector fnl(u) (Ne

being the number of DOFs for the element e), Ve is the restriction of V to the rows
indexed by the DOFs corresponding to e, and ne is the total number of elements
in the mesh. Since the reduced nonlinear term f̃(q) is evaluated in the space of full
variables, the computational cost associated to its evaluation does not scale with m
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alone. Indeed, (6.45) shows that this cost scales linearly with the number of elements
in the structure, and can hence be high for large systems. Thus, despite the reduction in
dimensionality achieved in (6.44), the evaluation of the reduced nonlinear term f̃(q)

hinders any fast prediction of system response using the ROM. Different strategies
are available to overcome this problem, andwill be addressed in the following section
in details. Here, it is sufficient to realize the following:

• In the case of polynomial nonlinearities, as the one arising from von Karman
kinematics of linear elastic bodies, it is possible to write the nonlinear reduced
force vector f̃(q) directly in modal coordinates by constructing reduced tensors
that contract on the modal coordinate directly, see for instance,(Touzé et al. 2014).

• When the nonlinearity is not polynomial, one is facing essentially two possibilities:

1. assume a certain form of f̃(q) and identify its parameters or
2. try to compute f̃(q) affordably, but still querying the underlying HFM mesh.

This strategy is addressed by the so-called hyper-reduction methods, which are
discussed, at least to some extent, in Sect. 6.8.

Clearly, any effort in efficiently computing the reduced nonlinear terms is useless
in the reduction basis V does not properly span the sought solution. In summary, a
successful ROM for (6.41) requires a suitable basis V and an efficient strategy to
scale the evaluation cost of f̃ to the size of the ROM. These aspects will be addressed
in the following sections.

6.4 Nonlinear Normal Modes

When a structure’s nonlinear behavior is not negligible, the traditional linear modal
framework, which is fundamental to our insight into the behavior of linear systems,
is no longer valid. We also lose the convenience of linear superposition and the
associated computational savings. The Nonlinear Normal Mode (NNM) offers a
different theoretical definition of a vibration mode that can be used to understand the
behavior of a system, while maintaining a conceptual similarity to linear vibration
modes. A structure’s nonlinear normal modes can be very useful as a metric to
evaluate a candidate Reduced Order Model (ROM) and to compare various ROMs.
The NNMs decompose the structure’s response into a set of modes, which can each
be described by an amplitude (or energy)-dependent natural frequency and mode
shape. However, they usually do not form a basis that can be used to uncouple the
equations of motion and solve for the response.

The nonlinear normal mode was originally defined by Rosenberg (1960) as a syn-
chronous, periodic motion, or a vibration in unison, of the nonlinear equations of
motion. More recently, Vakakis, Kerschen, and others (Vakakis 1997; Kerschen et al.
2009) have extended this definition to include periodic motions where modal inter-
actions may also occur by relaxing the restriction to synchronous motion. According
to their definition, which is the one used throughout this paper, a nonlinear normal
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mode is a not necessarily synchronous periodic response of the undamped nonlin-
ear equations of motion. The term normal is retained here to be consistent with
the terminology used throughout the literature, even though the properties of modal
superposition and orthogonality do not apply. Each NNM describes how the reso-
nant frequency and response of the structure changes as the response amplitude (or
energy) increases. They provide a wealth of insight into the structure’s behavior since
they form the backbone of the systems nonlinear forced response. In other words,
each NNM gives an estimate of the deformation of the structure when it is excited
near resonance over a range of forcing (or response) amplitudes. For lightly damped
structures, the damped invariant manifold can be approximated by the undamped
invariant manifold (i.e., the NNM), meaning that the freely decaying response tends
to follow an undamped NNM. Nonlinearities in a physical model can come in a
variety of forms such as of large deformations, jointed connections, buckling, mate-
rial constitutive laws, and contact. These nonlinearities introduce behavior such as
frequency–energy dependence, localization, modal interactions, and bifurcations.
The nonlinear normal mode accounts for such salient nonlinear behavior, providing
many insights into the system response.

6.4.1 Periodic Motions of an Undamped System: Nonlinear
Normal Modes

The N -Degree of Greedom (DOF) Equations of Motion (EOM) for a nonlinear
finite element model generally can be written as follows, and all terms were defined
previously.

Mẍ + Cẋ + Kx + fNL(x) = f(t). (6.46)

The external loads are applied through the N × 1 force vector f(t). The N × 1
nonlinear restoring force vector, fNL(x), accounts for the nonlinearity in the physical
system.

The undamped NNM definition used here comes from the works of Kerschen et
al. (2009), who defined an NNM as a not necessarily synchronous periodic motions
of the conservative equations of motion. By this definition, the periodic motions that
occur when two or more modes interact are still considered NNMs since they relaxed
the restriction of synchronous motion defined originally by Rosenberg (1960). Many
new features emerge with this definition of a vibration mode that cannot be described
with linear modal analysis, such as frequency–energy dependence, bifurcations,
localization, and modal interactions. Typically, the NNMs are represented on the
frequency–energy plane, showing how the fundamental frequency of the periodic
motion changes as the energy of the system (which is conserved over the period of
the response) evolves.

Mathematically, the NNMs are solutions to the undamped, unforced equation of
motion given below.
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Mẍ + Kx + fNL(x) = 0. (6.47)

A variety of algorithms exist for computing NNMs, for example, the shooting algo-
rithm in Kerschen et al. (2009) has proven very effective. Typically, the algorithm is
initialized with the linear natural frequency and mode shape as an initial guess, and
continuation methods are used to trace the solution as amplitude increases.

If we consider again the forced, damped system, we can see that the NNM is a
solution to the forced, damped system only if

Cẋ = f(t). (6.48)

This corresponds to the resonant case for the system, because only the damping
forces are able to resist the applied force. Hence, the NNM can be thought of as a
collection of worstcase forced responses for the system.

� As an example, consider the curved beam shown in Fig. 6.5. The beam is
3D printed from PLA plastic onto a stiff, C-shaped backing structure that is
constructed from the same material. The structure is excited at its base by a
slowly sweeping sinusoidal input (so that it nearly reaches steady state at any
instant) over a range of amplitudes.

Fig. 6.5 A curved beam is an example of a structure that can exhibit geometric nonlinearity.
As the vibration amplitude increases, stresses that build up in the beam start to cancel the
bending stiffness, so the effective stiffness and hence effective vibration frequency goes down.
At large amplitudes, the structure stiffens since the beammust stretch axially to accommodate
higher amplitude motion

The response of the beam is shown in Fig. 6.6. As the amplitude of the excita-
tion increases, the frequency at which the peak response occurs first decreases
from about 145Hz to about 138Hz. The NNM is also shown, as measured
experimentally over a range of amplitude. The NNM correlates with the peak
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response at each forcing amplitude. At even higher amplitudes, effective reso-
nance frequency increases again, as is predicted well by the NNM.

Fig. 6.6 Response of the curved beam to swept-sine input forces at various amplitudes. The
NNM is overlaid, expresses as the velocity of the center point of the beam versus frequency

�

Considering again Eq.6.48, and noting that the damping forces are generally
distributed over the entire structure, it seems that it would be rare that a structure
would be excited into an NNM. However, one can use force balance to show that a
forcemaybedistributed spatially in avariety ofways, including a simple concentrated
force at a point, and still excite an NNM.

Specifically, one can use the energy balance technique in Hill et al. (2014, 2015)
to show that the total energy dissipated by the nonlinear system over one cycle is

Ediss/cyc =
∫ T

0
Pdiss dt. (6.49)

If the system is excited by an arbitrary forcing function f(t), the energy input into
the system as

Ein/cyc =
∫ T

0
ẋ(t)Tf(t) dt. (6.50)

At steady state, the energy dissipated by the damping forces must match the total
energy input to the system over the period T . The balance is enforced by setting
Ediss/cyc = Ein/cyc. Then, if the response, ẋ(t) is assumed to take the shape of
the NNM that is nearest in frequency, and the spatial distribution of the force is
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known, then one can solve for the force amplitude. For example, if a single-point
co-sinusoidal force is applied with complex amplitude A + i0, the scaling on A can
be computed by satisfying

A
∫ T

0
ẋ(t)T

(
eneiωt

)
dt =

∫ T

0
ẋ(t)TCẋ(t) dt (6.51)

where en is a vector of zeros with a value of one at the location n, which is the point
at which the force is applied. If both the NNMs x(t) and the dampingC in the system
are known, Eq. (6.51) can be readily used to estimate the forcing amplitude A that
would excite the system at resonance in the associated NNM x(t). In Kuether et al.
(2015), this approach was demonstrated and found to be very effective for predicting
the forcing required to drive a system near a known NNM. Furthermore, it also
proved useful in providing the initial guesses needed to compute isolated resonance
branches.

6.5 Nonintrusive Reduced Order Modeling (ROM)
for Geometrically Nonlinear Structures: ICE and ED

By nonintrusive methods, we mean procedures that are able to construct the ROM
(6.44) without requiring access and manipulation of elemental quantities, as for
instance internal forces and tangential stiffness matrices. As such, the ROM is
formed by properly probing the model by use of general purpose FE programs (e.g.,
ABAQUS, NASTRAN) and match an a priori determined form for the ROM to the
obtained data.

The discretized system of equations for an N Degree of Freedom (DOF) linear
elastic, geometrically nonlinear finite element model can be written as

Mẍ + Kx + fNL(x) = f(t), (6.52)

whereM is the N × N mass matrix, K is the N × N linear stiffness matrix, fNL(x)
is the N × 1 nonlinear restoring force vector, and f(t) is the N × 1 external force
vector. The N × 1vectorsX and ẍ are the displacement and acceleration, respectively.
The NLROM procedures seek to reduce these undamped, nonlinear equations using
the linear vibration modes as the reduction basis, which are found by solving the
eigenvalue problem (K − ω2

rM)ϕr . A small set of mass normalized mode shapes
approximate the kinematics of the EOM as

x(t) = ϕmq(t). (6.53)

Each column in the N × M mode shape matrix, ϕm , is a mass normalized mode
shape vector, ϕ, and q is an vector of m × q time-dependent modal displacements.
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The reduced coordinate space q is significantly smaller than the physical coordinate
space X (i.e., m << N ).

In order to reduce the full order EOMs, Eq. (6.53) is substituted into Eq. (6.52) and
premultiplied by ϕT

m to assure that the residual error is orthogonal to the reduction
basis (note that ( )T is the transpose operator). The reduced, nonlinear modal form
of the r th equation becomes

q̈r + cr q̇r + ω2
r + θr (q1, q2, . . . , qm) = ϕT

r f(t), (6.54)

where ωr is the linear natural frequency, and qr is the r th modal displacement. The
nonlinear modal restoring force is given as

θr (q) = ϕT
r fNL(ϕq). (6.55)

The nonlinear restoring forces are a nonlinear function, θr (q), of the modal dis-
placements. If the finite element model is linear elastic with geometric nonlinear-
ities derived using quadratic strain–displacement relationships, the function θr (q)

becomes a quadratic and cubic polynomial, and is given as

θr (q1, q2, . . . qm) =
m∑

i=1

m∑

j=1

Br (i, j)qi , q j +
m∑

i=1

m∑

j=1

m∑

k=1

Ar (i, j, k)qi , q j , qk .

(6.56)
The coefficients and are the quadratic and cubic nonlinear stiffness terms, respec-
tively, for the r th nonlinear modal equation. If the full order EOM in Eq. (6.52) are
known in closed form, then the nonlinear coefficients in Eq. (6.56) can be directly
computed (referred as direct evaluation in Hollkamp and Spottswood 2005). How-
ever, in cases where the closed form equations are not explicitly available (e.g.,
within commercial finite element packages), an indirect approach must be used. The
coefficients are approximated using either the ED or ICE methods using a series
of nonlinear static solutions. Once these nonlinear stiffness terms are identified, the
NLROM equations are given by Eqs. (6.54) and (6.56), providing a significant com-
putational savings for response prediction compared to direct time integration.

Typically, the linear term is set to ω2
r and treated as a known value during the

identification of Br and Ar .

6.5.1 Enforced Displacements Procedure

The Enforced Displacements Procedure uses a set of prescribed displacements in
the shape(s) of the linear modes in the basis in Eq. (6.53). In general, a multimodal
displacement can be written as

Xc = ϕ1q̂1 + ϕ2q̂2 + · · · + ϕm q̂m, (6.57)
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whereXc is an N × 1 displacement vector and q̂r is the scaling factor for the r thmode
in the basis. In order to accurately estimate the ROM, the scaling factors should scale
the deformation shape of each mode to a level that exercises the geometric nonlinear-
ity in the structure. Using a commercial finite element software package, the resulting
reaction forces, Fc, are computed in response to the given displacement field. Then,
the quasi-static representation of the NLROM for the r th modal equation becomes

ω2
r q̂r +

m∑

i=1

m∑

j=1

Br (i, j)qi , q j +
m∑

i=1

m∑

j=1

m∑

k=1

Ar (i, j, k)qi , q j , qk = ϕT
r Fc. (6.58)

The nonlinear stiffness coefficients are then solved for using the approach pre-
sented in Muravyov and Rizzi (2003) with a set of displacement load cases that are
in a combination of one, two or three modes in the basis set. The number of nonlinear
static solutions, for m > 3, required by the ED method (Mignolet and Spottswood
2013) is

2m + 3m!
2(m − 2)! + m!

6(m − 3)! . (6.59)

6.5.2 Applied Loads Procedure or Implicit Condensation
and Expansion

The applied loads procedure uses a set of static forces in the shape of the linear modes
in order to find the nonlinear stiffness coefficients of the NLROM. For example, a
multimode static force can be a combination of those forces that would excite any
of the modes in the reduced basis, given as

Fc = M(ϕ1 f̂1 + ϕ2 f̂2 + · · · + ϕm f̂m), (6.60)

where Fc is the vector of applied forces and f̂r is the force scaling factor for the r th
mode. Note that the previous works on the applied loads method did not mention the
use of the mass matrix when computing the force vector, but it was used here and
is needed to obtain a force that exactly isolates a single mode for a linear system.
The force scaling factors can be varied to exercise the desired amount of geometric
nonlinearity in the structure, as will be discussed further in Section III. The resulting
static deformation, Xc, can then be projected onto the linear modal coordinates as
follows.

qr = ϕrMxc. (6.61)

Using the quasi-static force–displacement relationship in Eq. (6.58), one can then
solve for the nonlinear stiffness coefficients with the constrained approach (Gordon
and Hollkamp 2011) using a set of these applied loads exercising the different modes
in the basis. With the applied loads approach, the number of load permutations (for
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m > 3) required to generate the static response data is given as

2m + 2
m!

(m − 2)! + 4m!
3(m − 3)! . (6.62)

The number of loads differs from that of the Enforced Displacement in Eq. (6.59)
due to differences in how the fits are performed; with the ED method sets of two
and three load cases can be used to solve algebraic equations for the coefficients,
whereas with ICE a larger least squares problem is solved.

6.6 Intrusive Methods

As opposed to nonintrusivemethods, intrusivemethods requires access to the specific
finite element formulation. This disadvantage is compensated by the possibility for
a more rigorous definition of the ingredients forming the reduction basis.

6.6.1 Modal Derivatives

Vibration Modes

The system in (6.41) can be linearized around its static equilibrium position.Without
loss of generality, we assume the equilibrium configuration is ueq = 0 to obtain

Mü + Cu̇ + K|equ = g(t), (6.63)

where

K|eq = ∂f(u)

∂u

∣∣∣∣
u=0

. (6.64)

This linearized systemwould be a good approximation to the original system in (6.41)
for small enough displacements from the linearization point. It is well established
that for such system, the system response can be written as a linear combination of
constant eigenmodes (or VibrationModes (VMs) in the structural dynamics context)
which form a basis of Rn as follows:

u(t) =
n∑

i=1

φi qi (t), (6.65)



www.manaraa.com

6.6 Intrusive Methods 249

where the eigenmodes φi ∈ R
n are the solution of the generalized eigenvalue prob-

lem1

(K|eq − ω2
i M)φi = 0. (6.66)

(ω2
i is the eigenvalue or the eigenfrequency squared). This approach of expressing

the solution u(t) in terms of a basis of eigenvectors is referred to as the principle
of linear modal superposition. However, if one is considering the slowly varying
dynamics of the system, then it can be shown that the response can be very accu-
rately approximated by few modes associated to low eigenfrequencies, and a modal
truncation can be obtained:

u(t) ≈
m∑

i=1

φiηi (t) = Φq(t), (6.67)

where Φ ∈ R
n×m , q(t) = [q1(t) q2(t) · · · qm(t)]T ∈ R

m,m 	 n. Note that this is
equivalent to performing a Galerkin projection as shown in Sect. 3.1 for a lin-
earized system, where Φ is the reduction basis and q are the corresponding reduced
unknowns.

Modal Derivatives

When the deviation from the linearization point increases, the response of (6.63)
can no longer be considered as a good approximation for the original nonlinear
counterpart. One might still think of using the VMs obtained from the linearized
model to form a reduction basis for the reduction of the nonlinear set of equations.
A basis composed of a few dominant VMs, however, is typically not sufficient for
reduction since it does not feature the dominant coupling effects (e.g., membrane-
bending), typical of geometrically nonlinear structures.

Earlier work in Idelsohn and Cardona (1985a, b) and more recent work in Weeger
et al. (2016); Witteveen and Pichler (2014) discuss the use of the so-called Modal
Derivatives (MDs) to capture the response of the nonlinear system upon departure
from the linear behavior. If (6.66) is differentiatedwith respect to themodal amplitude
q j (assumingM to be a constant mass matrix) and then evaluated at equilibrium, one
obtains

(K|eq − ω2
i |eqM)

∂φi

∂q j

∣∣∣
∣
eq

+
(

∂K
∂q j

∣∣∣
∣
eq

− ∂ω2
i

∂q j

∣∣∣
∣
eq

M

)

φi |eq = 0, (6.68)

where the MD ∂φi
∂q j

denotes the derivative of the i th mode in the j th modal direction.
The tangent stiffness matrix derivative with respect to η j is obtained by imposing t
a displacement in the direction of φ j |eq to the system, i.e.,

1Here, we neglect the damping contribution in eigenvalue problem to avoid complex eigenvalues
and vectors. Note that for damped linear systems with low damping or modal/Rayleigh damping,
the eigenvectors for an undamped system are a good approximation for the damped counterpart and
still form a good basis for linear modal superposition.
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∂K
∂q j

∣∣∣∣
eq

= ∂K(u = η jφ j |eq))
∂q j

∣∣∣∣
q j=0

. (6.69)

Physically, anMD represents the sensitivity ofVMφi corresponding to a displace-
ment given in the direction of VMφ j . TheseMDs can be used as efficient enrichment
to the reduction basis to capture the dominant nonlinear behavior effectively.

Calculation of Modal Derivatives

The MDs ∂φi
∂q j

∣∣
∣
eq

cannot be easily obtained from (6.68) since the coefficient matrix

is singular, cf. (6.66). This singularity can be tackled by imposing a normalization
condition for the eigenmodes. More details on different solution techniques can be
found in Ref.Siddhi (2005). The popular mass normalization is adopted here, i.e.,

φT
i Mφi = 1 ∀i ∈ {1, 2, . . . ,m}. (6.70)

By differentiating the equation abovewith respect to themodal amplitude one obtains

φT
i M

∂φi

∂q j
+ φT

i M
T ∂φi

∂q j
= 0 ∀i, j ∈ {1, 2, . . . ,m}. (6.71)

Exploiting the symmetry ofM and subsequent evaluation at the equilibrium position
results in the following relation:

φT
i |eqM ∂φi

∂q j

∣∣∣∣
eq

= 0 ∀i, j ∈ {1, 2, . . . ,m}. (6.72)

The following direct approach to calculate the MDs can then be formulated using
(6.68), (6.72):

[[K|eq − ω2
i |eqM]n×n − [

Mφi |eq
]
n×1

− [
Mφi |eq

]T
1×n 01×1

]⎡

⎣
[1] ∂φi

∂q j

∣∣∣
eq

∂ω2
i

∂q j

∣∣∣
eq

⎤

⎦ =
⎡

⎣− ∂K
∂q j

∣∣
∣∣
eq

φi |eq
0

⎤

⎦ .

The above non-singular system can be used to solve forMDs. This method, however,
destroys the band structure of the original system. Nonetheless, it is rigorous and
accurate. Apart from this direct approach, the pseudoinverse technique (cf. G’eradin
and Rixen 1997) and the Nelson’s method (Nelson 1976) are some techniques that
preserve the band structure of the matrices.
Regardless of themethod adopted to solve (6.68), a high-dimensional matrix needs to
be factorized for eachωi . In Idelsohn and Cardona (1985b), a method to approximate
the problem (6.68) is discussed. They propose neglecting the inertial contribution as

K|eq ∂φi

∂q j

∣∣∣∣

s

eq

= − ∂K
∂q j

∣∣∣∣
eq

φi |eq . (6.73)
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We call the obtained MDs as StaticMDs (SMDs). The superscript s in ∂φi
∂q j

∣∣∣
s

eq
stands

for static.
Note that the StaticModalDerivatives given in (6.73) are symmetric, i.e., ∂φi

∂q j

∣∣
∣
s

eq
=

∂φ j

∂qi

∣∣
∣
s

eq
. In fact, it is easy to see that the stiffness matrix derivative given by (6.69)

can be written as

∂K
∂q j

∣∣
∣∣
eq

= ∂K(u)

∂u

∣∣
∣∣
u=0

· φ j |eq = ∂2f(u)

∂u∂u

∣∣
∣∣
u=0

· φ j |eq . (6.74)

Substituting this into (6.73), we obtain

K|eq ∂φi

∂η j

∣∣∣∣

s

eq

= −
(

∂2f(u)

∂u∂u

∣∣∣∣
u=0

)
: (φ j |eq ⊗ φi |eq) . (6.75)

The third-order tensor
(

∂2f(u)

∂u∂u

)
which contains the second-order partial derivatives is

symmetric by Shwarz’ theorem (f(u) ∈ C2(Rn,Rn)), i.e.,
(

∂2f(u)

∂u∂u

)

I i j
=

(
∂2f(u)

∂u∂u

)

I j i
.

Therefore, we get

∂φi

∂η j

∣∣
∣∣

s

eq

= −(K|eq)−1

[
∂2f(u)

∂u∂u

∣∣
∣∣
u=0

: (φ j |eq ⊗ φi |eq)
]

(6.76)

= −(K|eq)−1

[
∂2f(u)

∂u∂u

∣∣∣∣
u=0

: (φi |eq ⊗ φ j |eq)
]

= ∂φ j

∂ηi

∣∣∣∣

s

eq

. (6.77)

While the SMDs have been shown to be symmetric, such a claim cannot be made
for the modal derivatives as given by (6.68).

(S)MDs in a Reduction Basis

A linear basis (Ψ ) consisting of VMs augmented with the corresponding MDs could
be used to reduce the nonlinear system (Idelsohn and Cardona 1985a, b).

Ψ = [
φ1|eq φ2|eq . . . φm |eq . . . θ i j |eq . . .

]
, (6.78)

where θ i j = ∂φi

∂η j

∣∣∣
∣
eq

or
∂φi

∂η j

∣∣∣
∣

s

eq

. From the chosen normalization in (6.72), any VM

φi is M-orthogonal to all corresponding MDs
∂φi

∂η j

∣∣∣∣
eq

∀ j ∈ {1, . . . ,m}. However,
this is not sufficient for Ψ to possess a full column rank, which is essential to have
a non-singular reduced system. In general, one should perform an orthogonalization
on Ψ before using it as a reduction basis.

UsingMDs, one could expect a maximum basis size ofm2 (if all MDs are linearly
independent). Since SMDs are symmetric, a basis Ψ ∈ R

n×M can be obtained using
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(S)MDs, where M = m + m(m+1)
2 would be its maximum size. Indeed, in both cases

inclusion ofMDs in the basis is expected to increase the reduced number of unknowns
quadratically with the number of VMs (m) in the reduction basis.

6.6.2 Wilson Vectors

Another popular way of constructing the reduction basis V is given by the Krylov
vectors. This technique is also known under different denominations as Wilson vec-
tors (Ming-Wu 1982), Arnoldi sequence (Arnoldi 1951) and load dependent vectors
(Idelsohn and Cardona 1985). Unlike vibration modes, it consists of finding a proper
reduction basis by using the information of the applied load distribution. Consider
the linear problem

Mü + Ku = g, (6.79)

where damping has been neglected. We first start by computing the linear solution

ũ0 = K−1g, (6.80)

which is then mass normalized, i.e.,

u0 = 1
√
ũT
0 Mũ0

ũ0 (6.81)

The static solution u0 is then used as acceleration distribution to obtain an inertial
forceMu0 as pseudo-load to obtain a new vector u1 as

u1 = K−1Mu0. (6.82)

The procedure can be made recursive, making sure that the newly computed vec-
tor is orthogonalized with respect to the previously calculated ones, and properly
orthogonalized. A generic vector ui of the sequence is first formed by computing
ûi as

Kûi = Mui−1, (6.83)

which is subsequently made orthogonal to the already computed vectors u j , j =
1, . . . , i − 1 as

ũi = ûi −
i−1∑

j=1

c ju j , (6.84)

where
c j = uT

j Mûi for j = 1, . . . , i − 1. (6.85)
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Finally, the mode is mass normalized as

ui = 1
√
ũT
i Mũi

ûi . (6.86)

The so obtained vectors represent a good basis for the linearized problem (6.79).
With respect to the vibration modes, they do not require the solution of an eigenvalue
problem, but only the solution of a sequence of linear problems sharing the same
matrix of coefficients, which can be then factorized once for all. Note also that the
sequence is initiated by the static solution u0, which is directly related to the shape
of the applied load. In contrast to vibration modes, Wilson vectors do account for the
particular load shape applied. As such, they tend to show faster convergence with
respect to vibration modes, but would need to be recomputed in case another load
shape is applied to the system.

Since the so obtained basis relates to the linearized problem, it is likely to per-
form poorly in the case of geometric nonlinearities. To overcome this limitation,
modal derivatives of Wilson vectors can be computed in a way analogous to the one
described in the previous section. In particular, say VW = [u1, . . . ,um] the basis of
linear Wilson vectors, then one can compute the modal derivatives

θWi j = K−1 ∂K
∂qi

u j (6.87)

and then form a reduction basis V as

V = [VW θW11 θW12 , . . . , θWi j , . . . , θWmm ], i, j = 1, . . . ,m. (6.88)

In order to avoid numerical issues, V can then be further orthogonalized.

6.7 Data-Driven Methods

All the techniques so far described can be classified as model-driven reduction
techniques—that is, the ROM is constructed by ingredients that are inherent to the
model. Another philosophy for deriving ROMS is based on data coming for the
simulation the HFM for some significant cases. These trajectories will then furnish
data which can be processed to obtain the reduction basis. This topic is vast, and
here, we just briefly introduce the main concept. It is important to realize that as
opposed to model- driven methods, which never require the solution of the HFM, the
data-driven methods tend to require significant computational and storing resources.
As such, their use is justifiable only when the obtained ROM—which tends to be
highly efficient—is extensively used so to amortize the offline costs associated to its
construction.
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6.7.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a data-driven method that outputs
a reduced order basis that best represents a given set of snapshots. The POD method
is applied in various fields. In our context, the snapshots represent the structural
configuration at sampled time instances.

Let ui ∈ R
n , i ∈ {1, . . . , nt } be snapshot vectors obtained from the full solution of

system (6.41), which are collected in the matrix U := [
u1,u2, . . . ,unt

] ∈ R
n×nt . A

lower dimensional PODbasisV = [v1 v2 . . . vm] ∈ R
n×m containingm 	 nt orthog-

onal vectors which best spans the vectors in this ensemble can be obtained by the
solution to the following minimization problem:

min
vi∈Rn

ns∑

j=1

∥∥∥∥∥
u j −

m∑

i=1

(uT
j vi )vi

∥∥∥∥∥

2

2

.

This is a least squares problem and the vectors in V are the left singular vectors of
U, obtained by the Singular Value Decomposition (SVD) of U of zero mean as

U = LSRT , (6.89)

where isU is factorized into unitary matricesL = [l1, l2, . . . , ln] ∈ R
n×n (containing

the left singular vectors) and R ∈ R
nt×nt (containing the right singular vectors);

and the diagonal (rectangular) matrix S ∈ R
n×nt (containing corresponding singular

values on the diagonal). These singular values represent the relative importance
of corresponding vectors of L in forming the basis V. If the singular values (and
the corresponding singular vectors) are arranged in a descending order S11 ≥ S22 ≥
· · · ≥ 0, it can be shown that

ns∑

j=1

∥∥
∥∥∥
u j −

m∑

i=1

(uT
j li )li

∥∥
∥∥∥

2

2

=
r∑

i=m+1

S2i i .

Thus, the left singular vectors li corresponding to the highest singular values are
the most relevant for constructing a reduction basis using POD. for our case, each
(normalized) left vector li is scaled by the corresponding singular value σi , and
associated to the time history contained in rTi . Since an SVD can be performed over
any solution snapshots of any general nonlinear problem, POD is seen as a versatile
method. It should be noted, however, that such a reduction basis is optimal only
for capturing the solution used to collect the snapshots. The procedure needs to be
repeated (or a database of full solutions need to be created in the first place) to take
other types of loading or boundary conditions into account.

Once a reduction basis is obtained, the same ensemble of full solution vectors
can be used as training vectors for hyper-reduction to accelerate the computation of
nonlinearity during the online stage. This is discussed in the following sections.
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6.8 Hyper-reduction

With the term hyper-reduction we indicate techniques that aim at providing a com-
putationally affordable computation of the reduced nonlinear terms f̃(q). In a FE
context, f̃(q) requires assembly over the whole FE mesh, as

f̃(q) =
ne∑

e=1

VT
e fe(Veq), (6.90)

and, as such, is computationally intensive, as it scales with the mesh size and not
with the size of the reduction basis. As already seen, one possibility is to write f̃(q)

directly in terms of q as

f̃(q) =
m∑

i=1

m∑

j=1

Br (i, j)qi , q j +
m∑

i=1

m∑

j=1

m∑

k=1

Ar (i, j, k)qi , q j , qk, (6.91)

where the coefficients Br (i, j) and Ar (i, j, k) are identified bymeans of nonintrusive
methods, or computed directly in case of polynomial nonlinearities. In more general
cases, alternatives to this approach are available. In the following sections, we briefly
present the Discrete Empirical Interpolation (DEIM) and some useful variants for the
FE context, and the Energy Conserving Sampling and Weighting (ECSW) method.
They differ in their philosophy, but they both aim at constructing f̃(q) cheaply and
independently of the actual form of f .

6.8.1 Discrete Empirical Interpolation and Variants

The main idea behind DEIM is to provide and approximation for the nonlinear
forces f(u) as a combination of few vectors forming a base F = [f1, . . . , fm] ∈ R

n×m

spanning a subspace of dimension m < n, as

f ≈ Fc, (6.92)

where c ∈ R
m×1 the vector of unknown amplitudes of such force vectors. The system

of Eqs. (6.92) cannot be solved, as it is overdetermined. In order to solve it, one option
is to choosem distinct rows of f . This can be done by premultiplying by the transpose
of a boolean matrix P ∈ R

n×m as

PT f = PTFc. (6.93)

If PTF is non-singular, we can determine the amplitudes c by solving (6.93) as
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c = (PTF)−1PT f, (6.94)

and therefore the approximate nonlinear force vector (6.92) becomes

f ≈ F(PTF)−1PT f . (6.95)

This is to say, the term PT f specifies that the nonlinear vector f needs to be calcu-
lated only at the entries specified by PT . The precomputed term F(PTF)−1 provides
approximated values at the other entries not considered by P. The projection basis F
is computed from a POD of an appropriate set of snapshots of the nonlinear forces
F = [f(u1), . . . , f(uns )]. The selection points are determined from the greedy Algo-
rithm1. Details are given in Chaturantabut and Sorensen (2010).

Algorithm 1 DEIM points selection
Input: {ui }mi=1 ⊂ R

n linearly independent
Output: ℘ = [℘1, . . . , ℘m ]T ∈ R

m

1: [|ρ| ℘1] = max |u1|
2: U = [v1], P = [eφ1], ℘ = [℘1]
3: for i = 2 to m do
4: Solve (PTU)c = PT ui for c
5: r = ui − Uc
6: [|ρ| ℘i ] = max |r|
7: U ← [U ui ], P ← [P e℘i ], ℘ ←

[
℘

℘i

]

8: end for

Inefficiency of DEIM Applied to FEM

The DEIM algorithm requires the evaluation of the nonlinear vector only at a few
selected locations. This approach is particularly efficient when f(y) is scalar valued.
By this, we mean that each component of the nonlinear force vector depends on the
corresponding entry of the displacement vector: fi = fi (yi ). In this case, the cost of
the DEIM evaluation of f is the cost of the evaluation of m scalar-valued functions
f℘i (Φ℘iq). If this holds, the selection matrix P can be brought inside the function
evaluation, as

PT f(Φq) = f(PTΦq). (6.96)

Unfortunately, this does not hold when f comes from a FEM discretization. In a FE
framework, each component fi represents the generalized force component at one
specific node. This entry depends on the generalized displacements of all the nodes
belonging to the neighboring elements, i.e., a given degree of freedom is supported
by a set of elements. As a consequence, P cannot be brought inside the function

PT f(Φq) �= f(PTΦq). (6.97)
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Fig. 6.7 Scalar-valued function (left) and vector valued function (right). In the first case, each
component Fi of F depends on only one component u j of u. In the second case, Fi depends on
several components of u. This latter case depicts the FE discretization

assembled mesh unassembled mesh

Fig. 6.8 Sparsity comparison for the evaluation of f at the DEIM points. In the case of assembled
meshes (left), one evaluation implies an element function call for all the neighboring elements. If
the mesh is treated as unassembled (left), only one element per DEIM point needs to be queried

This issue is illustrated in Fig. 6.7b and is responsible for the diminished inefficiency
of DEIMwhen applied on FE schemes. In general, a generic component f℘i depends
on a subset of the displacements ū℘i ∈ R

p, where p depends on the type of element
and the mesh connectivity. This implies that the evaluation of a single component fi
of the nonlinear force vector f requires a call to the element functions relative to all
the neighboring elements.

Alternative DEIM Formulation

Apossibleworkaround of the inefficiency discussed in the previous section is to apply
DEIMon an unassembled force vector, i.e., on the stacking of all the elemental forces
without performing element connection. In this way, the evaluation of a single entry
of such vector will require just one element call. The concept is illustrated in Fig. 6.8.
This modification is called Unassembled DEIM (UDEIM).
Unassembled DEIM

Essentially, one has to form a collection of snapshots Fu = [
fu(y1), . . . , fu(yns )

]
of

the unassembled forces obtained form a full model simulation. This can be formally
written as

fTu =
[
fTe1(ye1), . . . , f

T
ene

(yene )
]
, (6.98)

where fTei (yei ) ∈ R
p×1 is the element force vector relative to the element i, i =

1, . . . , ne and p is the number of elemental degrees of freedom. It follows from (6.98)
that fTu ∈ R

nu×1, where nu = pne is the size of the unassembled force snapshots. The
vector fu is projected onto a basis Uu obtained by a SVD of the unassembled force
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snapshots. The DEIM algorithm is then applied to Uu and the obtained indices will
point to elemental degrees of freedom, instead of mesh ones. Once the amplitudes
cu have been obtained, an assembled approximation of f can be formed by

f ≈ Ua(PT
u Uu)

−1(PT
u fu), (6.99)

where Ua is obtained by a FE assembly of Uu the element contribution. The details
of the UDEIM algorithm are shown in Algorithm2.

As indicated, each snapshot fui contains nu > n components. Since the number of
operations to obtain an SVD decomposition of a r × q matrix is proportional to r2q,
the computational cost to calculate the reduction basis for the nonlinear forces in the
unassembled case can be significantly higher than the one related to the assembled
forces snapshots of the original DEIM. To overcome this drawback, we propose the
use of an element surrogate quantity, as discussed next.

Algorithm 2 UDEIM
Input: unassembled snapshots Fu = [f1u , . . . , fnsu ] ∈ R

nu×ns

1: SVD(Fu) : Fu = ŨuΣuVT
u

2: select first m columns of Ũu : Uu = Ũu(:, 1 : m), with m < ns
3: DEIM(Uu) → Pu (Algorithm 1)
4: ecompute (PT

u Uu)
−1

5: assemble Ua ∈ R
n×m : Ua := assemble(Uu)

6: f ≈ Ua(PT
u Uu)

−1(PT
u fu)

Surrogate Unassembled DEIM

The unassembled basis Uu contains the most relevant force modes where each ele-
ment contribution is left unassembled. ADEIM selection onUu (UDEIM) as outlined
inAlgorithm1 then picks themost relevant elemental forces to form the interpolation.
This way to proceed improves the sparsity of the force–displacement dependency
but increases the effort of performing the SVD of the snapshots.

Themain idea is that each elemental contribution can be represented by a surrogate
quantity rather than the complete elemental force vector. If this holds, the size of the
unassembled snapshot vectors can be reduced while preserving the advantage of
operating on elements directly.

Let us assume that the contribution of element i to the nonlinear behavior can be
represented by the sum sei of all its generalized force components f ei , as

sei =
p∑

j=1

fej . (6.100)

In case the generalized element forces do not share the same units (as in the shell
element case here considered), the surrogate can be extended as
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sei =
⎡

⎣

∑p f

j=1 f
e
j

∑pm
j=1 m

e
j

⎤

⎦ , (6.101)

where me
i are the nodal elemental moments, and p f and pm are the number of

element forces andmoments, respectively. Then, a collection of surrogates snapshots
S = [

S1, . . . ,Sns
]
can be built, where each vector Si is given by

ST
i = [

se1 . . . , sene
]
, (6.102)

and S ∈ R
s×ns , s being the size of the surrogate snapshots, and s 	 nu . If the sur-

rogate snapshots Si are supposed to feature the same overall contribution as the
corresponding unassembled snapshots Su , then we can assert that a SVD decompo-
sition of S and Fu should yield very similar right singular vectors V, at least for the
dominant left singular vectors Uu . This request can be written as

SVD(Fu) : Fu = UuΣuVT

SVD(S) : S = USΣSVT .

(6.103)

It is useful to remind here that the right vectors V represent the time history of the
corresponding left singular vectorsUu . By claiming the decomposition (6.103) holds,
we imply that the unassembled singular vectors Uu and the surrogates vectors US

share the same time behavior. Our numerical results indeed show that this indeed
holds for the most significant modes. Since we are interested in only the spatial basis
Uu , the expensive decomposition SVD(Fu) can be avoided and the basis Uu can
be formed by using the vectors V obtained by the less computationally expensive
SVD(S), as

FuV = UuΣuVTV = UuΣu = Ūu,

Uu = orth(Ūu),

(6.104)

where V is calculated from the inexpensive SVD(S) and Uu = orth(Ūu) is a Gram–
Schmidt orthogonalisation such that UT

u Uu = I. In other words, if the surrogates
singular vectors feature the same time dependency V as the unassembled singular
vectors,we are able to computeUu without performing the expensiveFu = UuΣuVT .
Once Uu is found, DEIM can be applied in a UDEIM fashion, as discussed in the
previous section.We call this variant of the procedure SurrogateUnassembled DEIM
(SUDEIM). The details of the algorithm are outlined in Algorithm3.
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Algorithm 3 SUDEIM
Input: unassembled snapshots Fu = [F1

u , . . . ,Fns
u ] ∈ R

nu×ns ,
1: surrogate snapshots S = [S1, . . . ,Sns ] ∈ R

s×ns , s < n
2: SVD(S) : S = ŨSΣSVT

3: Ūu ≈ FuV and Ũu = orth(Ūu)

4: select first m columns of Ũu : Uu = Ũu(:, 1 : m), with m < ns
5: DEIM(Uu) → Pu (Algorithm 1)
6: compute (PT

u Uu)
−1

7: assemble U ∈ R
n×m : U := assemble(Uu)

8: F ≈ U(PT
u Uu)

−1(PT
u Fu)

Surrogate DEIM

It follows from the discussion above that the concept of the surrogate can be applied
also to the assembled basis for the nonlinear forces U, as outlined in Algorithm4.
The computational saving lies in this case only in the cheaper SVD decomposition of
the surrogate, while the sparsity of the force–displacement mapping is not improved.
This variant is called SurrogateDEIM (SDEIM) (seeAlgorithm4). Numerical results
comparing these different variants of DEIM are presented and discussed in Tiso and
Rixen (2013).

Algorithm 4 SDEIM
Input: snapshots F = [F1, . . . ,Fns ] ∈ R

n×ns ,
1: surrogate snapshots S = [S1, . . . ,Sns ] ∈ R

s×ns , s < n
2: SVD(S) : S = ŨSΣSVT

3: Ū ≈ FV and Ũ = orth(Ū)

4: select first m columns of Ũ: U = Ũ(:, 1 : m), with m < ns
5: DEIM(U) → P (Algorithm 1)
6: compute (PTU)−1

7: F ≈ U(PTU)−1(PTF)

6.8.2 Energy Conserving Sampling and Weighting

The ECSW method (Farhat et al. 2014, 2015) is based on a different principle as
compared to DEIM. Essentially, ECSW aims to identify a small set of elements E
of the structure (|E | 	 ne) to cheaply approximate f̃(q) as (cf. (6.45))

f̃(q) =
ne∑

e=1

VT
e fe(Veq) ≈

∑

e∈E
ξeVT

e fe(Veq), (6.105)

where ξe ∈ R
+ is a positive weight assigned to each element e ∈ E , which is empir-

ically chosen to ensure a good approximation of the summation in (6.45). Clearly, if
|E | 	 ne, then the evaluation of the approximation in (6.105) is cheap when com-
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pared to the cost associated to to (6.45). In doing so, ECSW approximates the virtual
work done by the internal forces on the set of vectors in the basisV. As a consequence,
the ECSW preserves the structure and the stability properties of the underlying full
model (cf. Farhat et al. 2015).

The elements and weights are determined to approximate virtual work over the
chosen training sets, which generally come from full solution run(s). If there are nt
training displacement vectors in the set with u(i) representing the i th vector, then
corresponding reduced unknowns q(i) can be calculated using least squares as

q(i) = (VTV)−1VTu(i).

The element level contribution of projected internal force for each of the training
vectors can be assembled in a matrix G as

G =
⎡

⎢
⎣

g11 . . . g1ne
...

. . .
...

gnt1 . . . gnt ne

⎤

⎥
⎦ ∈ R

mnt×ne , b =
⎡

⎢
⎣

b1
...

bnt

⎤

⎥
⎦ ∈ R

mnt ,

gie = VT
e fe(Veq(i)), bi = f̃

(
q(i)

) = ∑ne
e=1 gie ,

∀i ∈ {1, . . . , nt }, e ∈ {1, . . . , ne} .

(6.106)

The set of elements and weights is then obtained by a sparse solution to the following
Non-negative Least Squares (NNLS) problem

ξ = arg min
ξ̃∈Rne ,ξ̃≥0

‖Gξ̃ − b‖2, (6.107)

A sparse solution of (6.107) (i.e., a solution vector with lots of zeros) returns a sparse
vector ξ , the nonzero entries of which form the reduced mesh E used in (6.105) as

E = {e : ξe > 0}.

An optimally sparse solution of (6.107) is NP-hard to obtain. However, a greedy
approach-based algorithm (Peharz and Pernkopf 2012), which finds a suboptimal
solution, has been found to deliver an effective reduced mesh E (Farhat et al. 2014).
For the sake of completeness, the procedure is listed here in Algorithm5, where ζ E
and GE denote, respectively, the restriction of ζ ∈ R

ne and columnwise restriction
of G to the elements in the active subset E . The set Z is the disjoint inactive subset
which contains the zero entry indices of ξ and ζ .
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Algorithm 5 Sparse NNLS for ECSW
Input: G,b, τ

Output: ξ ∈ R
ne sparse, E ⊂ {1, . . . , ne}

1: E ← ∅, Z ← {1, . . . , ne}, ξ ← 0 ∈ R
ne

2: while ‖Gξ − b‖2 > τ‖b‖2 do
3: μ ← GT (b − Gξ)

4: [|ν|, e] = max (μ) � max: returns maximum value in a vector followed by its location
(index)

5: E ← E ∪ {e}, Z ← Z\{e}
6: while true do
7: ζ E ← G†

Eb � † represents pseudoinverse
8: ζ Z ← 0
9: if ζ E > 0 then
10: ξ ← ζ

11: break
12: end if
13: η = min

k∈E ξk/(ξk − ζk)

14: ξ ← ξ + η(ζ − ξ)

15: Z ← {i |ξi = 0}
16: E ← {1, . . . , ne}\Z
17: end while
18: end while

6.9 Hurty/Craig–Bampton Substructuring with ROMs
and Interface Reduction

The material reviewed here comes primarily from Kuether et al. (2016) and Kuether
et al. (2017). Several nonlinear substructuring methods have been developed to pre-
dict the dynamics of an assembly based on the dynamics of its subcomponents. For
a review of the relevant literature, see Kuether et al. (2017).

This section focuses on geometric nonlinearities that are distributed throughout
all the elements in the subcomponent FEAmodel. Recently, Wenneker (2013) used a
basis defined by the Craig–Bampton and Rubin approach and augmented these with
modal derivative vectors in order to account for the effects of geometric nonlinearity.
The number of modal derivatives required scales quadratically with the number of
componentmodes used, resulting in a rather large order reduced system. Perez (2012)
was the first to explore the use of CB modes and a reduced set of constraint modes
in conjunction with an indirect reduced-order modeling approach. He presented a
thorough analysis of a complicated multi-bay frame reducing the linear model from
96,000 to 232 DOF that were a combination of fixed-interface modes and constraint
modes reduced using proper orthogonal decomposition. Unfortunately, this model
was still 2.6 times larger than an 89 mode ROM that he had created for the assembled
system, so nonlinear modal substructuring was not pursued further.
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The proposed nonlinear substructuring approach relies on a nonintrusive, reduced
order modeling strategy that can generate a ROM from any geometrically nonlinear
FEAmodel as described in Sect. 6.5. This ROM formulation is valid for beams, shells
and solid structures whether flat, curved or interconnected and the components may
be meshed with a variety of 1D, 2D, or 3D elements. However, the focus of this work
and of most of the studies that use this type of ROM has been on flat and/or curved
shell type structures where nonlinearity comes about as bending deformations induce
in-plane stretching.

Starting with the linearized subcomponent modes as a basis, a low order set of
nonlinear equations in parametric form are formulated in terms of the modal coor-
dinates. For linear elastic finite element models with quadratic strain–displacement
relations, the nonlinear modal restoring forces are a quadratic and cubic polynomial
function of modal displacements. In Kuether et al. (2017), a Craig–Bampton nonlin-
ear reduced order model (CB-NLROM) was used for each subcomponent using the
fixed-interface and constraint modes, the nonlinearity was described by nonlinear
stiffness parameters obtained using the Implicit Condensation and Expansion (ICE)
approach discussed in Sect. 6.5.

One important application for this nonlinear modal substructuring techniques is
as an efficient means of evaluating the effect of boundary conditions on geometric
nonlinearity. Accurate modeling of in-plane forces becomes especially important
during the analysis of coupled fluid–thermal–structural interactions as the in-plane
resistance to thermal expansions can affect the onset of buckling, causing very dif-
ferent response behaviors to oscillating pressure loads. That stiffness is provided by
a complicated airframe structure adjacent to the panel of interest, (a structure that
may not even be fully designed yet when panel loads are considered), and it is usu-
ally simplified. For example, these boundaries are approximated as either pinned or
fixed, or with discrete springs to approximately model the compliance of the adjacent
airframe. The CB-NLROM procedure can be used to evaluate the effect of boundary
conditions, i.e., on a structuralmodification problemwhere a geometrically nonlinear
beam is modified by adding stiffness with an in-plane spring element.

Starting with the equations of motion for a conservative, N -DOF system dis-
cretized by the finite element method,

Mẍ + Kx + fNL(x) = f(t), (6.108)

the N × 1 nonlinear restoring force vector, fNL(x), captures the interior forces intro-
duced by the geometric nonlinearity and depends on the strain model used to model
the large deformations. For the reduction procedure that follows, it is assumed that
the FEA model is linear elastic with a quadratic strain–displacement relationship.
The N × N linear mass and stiffness matrices,M andK, respectively, are generated
using linear finite element analysis, and the external loads are applied through the
N × 1 vector f(t).

As elaborated previously, a Hurty/Craig–Bampton model can be written as fol-
lows. Below, the nonlinear forces due to geometric nonlinearity are also included.
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[
Mi i Mib

Mbi Mbb

]{
ẍi
ẍb

}
+

[
Ki i Kib

Kbi Kbb

]{
xi
xb

}
+

{
fNL ,i (x)
fNL ,b(x)

}
=

{
0

f(t)

}
. (6.109)

To reduce this partitioned system of equations, the Hurty/Craig–Bampton trans-
formation matrix is used, which is repeated here for convenience.

x =
{
xi
xb

}
=

[
Φi k Ψ̂i b

0 Ibb

]{
qk
xb

}
= TCBq. (6.110)

The CB-NLROM of a subcomponent is defined by the low order set of equations,

M̂CB q̈ + K̂CBq + TT
CB

{
fNL ,i

(
TT
CBq

)

fNL ,b
(
TT
CBq

)
}

= TT
CB

{
0

f (t)

}
, (6.111)

where

M̂CB = TT
CB

[
Mi i Mib

Mbi Mbb

]
TCB =

[
Ikk M̂kb

M̂bk M̂bb

]
, (6.112)

K̂CB = TT
CB

[
Ki i Kib

Kbi Kbb

]
TCB =

[
Λkk 0kb
0bk K̂bb

]
. (6.113)

The linear portion is exactly that of the CB reduced order model for any linear
subsystem. Most commercial finite element packages are not able to directly extract
the functional formof the nonlinear restoring force, fNL(TT

CBq), in terms of themodal
coordinates. However, because the geometric nonlinearity is known to be expressible
in terms of quadratic and cubic polynomials for the common large displacement
strain models, the same functional form will hold for the fixed-interface modes of
the structure. As a result, the nonlinear term in Eq. (6.111) becomes

TT
CB

{
fNL ,i

(
TT
CBq

)

fNL ,b
(
TT
CBq

)
}

= θ (q) (6.114)

and each row of the nonlinear function θ(q) defines the nonlinear portion of the r th

modal equation as

θr (q) =
m∑

i=1

m∑

j=1

Br (i, j)qi , q j +
m∑

i=1

m∑

j=1

m∑

k=1

Ar (i, j, k)qi , q j , qk (6.115)

The nonlinear stiffness coefficients can then be determined using the Implicit
Condensation method as explained in Sect. 6.5. The resulting nonlinear model can
also be expressed in the Nash form, which is convenient for what follows.

N1 (q) = ∂β

∂q
=

[
∂β

∂q1
∂β

∂q2
. . .

∂β

∂qm

]
, (6.116)
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N2 (q) = ∂α

∂q
=

[
∂α
∂q1

∂α
∂q2

. . . ∂α
∂qm

]
. (6.117)

TheCB-NLROM inEq. (6.111) is then rewritten inmatrix formwith the nonlinear
stiffness matrices in the equations above as

M̂CB q̈ + K̂CBq + 1

2
N1 (q) q + 1

3
N2 (q) q = TT

CB

{
0

f (t)

}
(6.118)

These ROMs can then be coupled using the methods outlined earlier, and their
behavior depends on the adequacy of the HCB basis for the modes of interest as
discussed earlier.

As an alternative to Implicit Condensation, one can also use modal derivatives
with an enforced displacements procedure to create a ROM for a substructure. This
is detailed in Chap.3 of Wu (2018). Substructuring can also be extended to flexible
multibody systems, as detailed inChaps. 4 and 5 ofWu (2018). The content ofChap.4
in Wu (2018) was published in Wu and Tiso (2016).
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Chapter 7
Weakly Nonlinear Systems: Modeling
and Experimental Methods

Abstract The prior chapter presented rigorous theory and methods for nonlinear
systems, which is necessary in general because many nonlinear systems exhibit
strong modal coupling due to the nonlinearity; this is commonly the case for the
geometrically nonlinear structures that were the focus of that chapter. However, one
of the most common sources of nonlinearity in built-up structures is the joints, and
in many cases, these introduce only a weak stiffness nonlinearity together with a
significant damping nonlinearity. In this case, and in many others that are relevant
to industry, one can obtain good estimates of the response of the structure using a
weakly nonlinear model in which the linear modes of the structure are presumed to
be preserved and coupling between modes is neglected. This chapter provides a brief
introduction to these concepts.—Chapter Authors: Randall Mayes and Matt Allen

7.1 Modal Models for Weakly Nonlinear Substructures
and Application to Bolted Interfaces

Much of the uncertainty in finite element models for built-up structures comes from
the interfaces (e.g., bolted joints, riveted connections, press-fits). They often cause
the structure to behave nonlinearly, making experiments more challenging, and to
model them accurately requires a nonlinear model that can be dramatically more
expensive. See Brake (2018), Bhushan (2013), Ferri (1995) for a review of these
issues. This work focuses on methods by which joints are represented in a simplified
way, so that the structure’s response can be simulated quickly and the model updated
to correlate with experimental measurements.

Inmost industrial applications, the bolts are designed to retain integrity, somost of
the joints nonlinearity is attributed to micro-slip friction in which the joint remains
intact but there is partial slipping for some material near the edges of the contact
(Groper 1985; Gaul and Lenz 1997). Commercial finite element codes typically
include the ability to simulate the static and dynamic response of flexible structures
with Coulomb friction between contacts. For example, Abaqus (2014) includes the
capability to model friction using Penalty and Lagrange methods. However, once the
contact interfaces are meshed with sufficient resolution to capture micro-slip and the
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penalty stiffness and stabilization are set to acceptable levels, the simulations become
very expensive for static response (Jewell et al. 2017), and completely prohibitive
when a dynamic response is desired that spans many cycles of oscillation. To seek
to address this, harmonic balance methods have been developed that computes the
frequency response directly (Petrov and Ewins 2003; Bograd et al. 2011). In order
to model micro-slip behavior accurately, such models typically require hundreds
of friction elements per interface (Di Maio et al. 2016). The resulting simulations
are still quite expensive and may be impractical if the model contains many joints.
Furthermore, when updating a model to correlate with measurements, one must
typically run many simulations while varying the parameters for the joint, a daunting
prospect with current models.

A recent work by Festjens et al. (2013) presented an alternative to traditional
time and frequency domain methods. They computed the quasi-static response of
the structure to a loading representative of a certain mode, and then used the results
of that simulation to compute the effective natural frequency and damping for the
structurewhen it vibrates in thatmode.Their predictionswerevalidatedbycomparing
them to the transient response computed by integrating a full-order nonlinear finite
element model, which included the preload in the fastener and the resulting Coulomb
friction between the contacting surfaces. Their methodology was found to provide
good estimates of the effective damping and natural frequency, however the costs are
still quite high if many iterations on the model must be run, i.e., for model updating
applications.

One way of reducing the computational burden associated with joints is to replace
the joint region with a simpler element that captures its effective stiffness and damp-
ing. Then, instead of enforcing frictional contact between individual nodes or element
faces, those degrees of freedom can instead be tied (e.g., by multi-point constraints)
to two ends of a single nonlinear element whose constitutive formulation is designed
to reproducemicro-slip behavior internally. Such amodeling approach is the premise
of Segalman’s “whole-joint” model (Segalman 2006). The nonlinear element may
be a hysteretic model such an Iwan (1966), Segalman (2005) model or a Bouc–Wen
(Ismail et al. 2009) or LuGre model. This is appealing because joints are often only
one small part of a complicated, assembled structure, and various experimental stud-
ies have shown that the presence of one or more bolted joints induces only a slight
softening in the natural frequencies, accompanied with a large increase in the damp-
ing as the structure is excited to higher response amplitudes (Di Maio et al. 2016;
Smallwood et al. 2000; Hartwigsen et al. 2004; Abad et al. 2012; Dossogne et al.
2017). Unfortunately, nomethods exist in literature that can predict the parameters of
these hysteresis elements based on joint geometry, surface roughness, material, etc.
So, one must use a model updating approach to determine the parameters. For exam-
ple, an experiment may be performed in which the transient-free response is mea-
sured and then the instantaneous natural frequency and damping for each mode are
extracted from those measurements (Song et al. 2004; Deaner et al. 2015; Roettgen
et al. 2017; Lacayo et al. 2017). Then, model updating can then be used to find the
joint parameters that bring the model into an agreement with the measurements as
was done in Lacayo and Allen (2018).
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7.2 Test Methods for Identifying Nonlinear Parameters
in Pseudo-Modal Models

The nonlinear modal models described in the previous section are shown schemat-
ically in Fig. 7.1, where the oscillator representing each mode contains nonlinear
elements in parallel to the linear spring and damper for each mode in order to pro-
duce the desired deviations from linear behavior. This method assumes that stiffness
is almost constant, but damping can be quite nonlinear. Modes are assumed not to
interact and mode shapes are assumed to not change. The Complex Mode Indica-
tor function plot in Fig. 7.2 shows the difference between a traditional linear modal
model response taken from low input force modal data and response of the system
from a higher level input. One can see that the frequencies appear to drop slightly but
the damping changes drastically at the higher amplitude response.With this approach
applied to such data, a modal filter can be utilized to effectively separate each modal
response (Mayes et al. 2016; Roettgen et al. 2017).

Modal Filter

A modal filter is a spatial filter that uses the mode shapes to pull out the response
of a single mode and rejects the responses of all other modes. By using such a filter,
one can analyze the response associated with that single shape and determine how
nonlinear it is or assume a functional form for the frequency and damping and fit
parameters to identify themodel. It should be emphasized that if the response of other
modes seeps through the filter, the estimates of stiffness or damping as a function
of amplitude can be polluted. As a result, the modal filter must be very effective in
order to reliably quantify the nonlinearity associated with the mode shape of interest.

The standard modal filter is a vector of constants, here denoted as Ψ , multiplied
by a vector of actual responses, x, which produces a single modal response q for
mode i , as

Ψ T x = qi . (7.1)

The traditional full modal filter may be derived from the standard modal substitu-
tion as

x = Ψ q. (7.2)

Fig. 7.1 Nonlinear pseudo-modal model with 3 DOF
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Fig. 7.2 CMIF of linear model versus measured data

Assuming that one has more responses than modes and the responses are appropri-
ately place one can use

q = Ψ +x, (7.3)

where each row of the pseudoinverse of Ψ can be used as a modal filter for the
associated mode. A variation on this is to use only a single mode of phi, but it is not
as effective as the full modal filter. The SMAC modal filter (Mayes and Johansen
1998) assumes that one has found the best linear estimate of frequency and damping
for a mode in a standard modal test. In this case, one can analytically write the
standard real modes FRF using the associated frequency, damping and drive point
mode shape, and use the measured FRFs from the test in the following equation:

Ψ THx = Hqi , (7.4)

where the only unknown is the vector Ψ . This is solved in the frequency domain and
transposed so that the frequency lines are associated with the rows with

Ψ = HT+
x HT

qi . (7.5)

In our experience, neither of the approaches above always performs better than the
other, however, usually the SMACmodal filter is more robust. A typical set of filtered
data for an attempt to extract a modal response in the mode above 550 Hz for all
three methods is shown in Fig. 7.3.
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Fig. 7.3 Full, single and
SMAC modal filters applied
to obtain the mode above
550Hz

Test Methods

The most attractive response for this approach is a modal filtered response from an
impact. Immediately after the impact, there are no external forces acting, so any
changes in the frequency or damping as a function of amplitude can be observed in a
straightforward analysis of the free decay time response. A version of the Restoring
Force Surface method can be used to fit the parameters in the assumed nonlinear
form. Below is the equation that is utilized from this method for an assumed form of
quadratic polynomials to fit the frequency and damping as a function of amplitude.
In this case, the entire right-hand side is known from the modal filtered data and the
frequency and damping extracted from a low level modal test. The functions of q on
the left-hand side are formed from themodal filtered q. This leaves only the quadratic
and cubic constants of the damping and stiffness polynomial to be extracted from
a least squares problem. The rows can be either time response, or response in the
frequency domain.

[ |q̇| q̇ q̇3 |q| q q3
]

⎡

⎢⎢
⎣

c1
c2
k1
k2

⎤

⎥⎥
⎦ = f − q̈ − c0q̇ − k0q.

Impact Methods

As stated above, the free decay from an impact is very attractive from an analysis
point of view. This makes and impact test desirable. The first one does the low- level
modal test with impact to get the linear estimates of frequency and damping for the
right-hand side above. Then one simply does a high-level impact and extracts the
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Fig. 7.4 Windowed sinusoid
time domain

modal response q with a modal filter to obtain the response for other amplitudes.
This is very easy to implement if the modal test has already been set up.

A disadvantage of the impact method has been observed in that since all modes
active in the drive point are excited at once, the drive point accelerometer can overload
at some impact levels,which provides the limit to howmuch themodes can be excited.
Also, because manymodes are excited, the modal filter is taxed to the greatest extent.
A tailored shaker input can overcome these disadvantages and will be discussed in
the next section.

Shaker Windowed Sinusoid

Away to overcome the disadvantages of the impact method is to use a shaker with an
input tailored to the local frequency band of a singlemode. This has two benefits. One
is that there are many modes that are not excited at all, so the modal filtering is easier
in the sense that many fewer modes must be filtered out. The second is that all the
energyof the shaker and amplifier can be poured into a singlemode to drive it to higher
amplitudes so that the nonlinear parameters are calibrated for the higher amplitudes.
A windowed sinusoid signal has been developed (Pacini et al. 2017), which allows
easy tailoring of the input to excite the mode of interest. The sinusoid frequency
is set to that of the resonant frequency of the mode. Then a triangular window is
multiplied by the sinusoid signal as seen in Fig. 7.4. A narrow triangular window
provides a broad input around the resonant frequency in the frequency domain. A
wide triangular window provides a narrow input around the resonant frequency in the
frequency domain. The frequency domain plot is shown in Fig. 7.5 (Other windows
are available as well.).

The signal is fed into the amplifier and the force ismeasured.A frequency response
function between the force and input voltage can be calculated. If the force drops
out too much (a common problem in shaker testing), then the FRF can be used to
calculate a voltage input that will fill in the dropout of the force at resonance with a
force correction. The corrected force is plotted in red in Fig. 7.6 with the desired force
in green and the initial force from the windowed sinusoid in blue. A time domain
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Fig. 7.5 Windowed sinusoid
frequency domain

Fig. 7.6 Correcting the
force to emulate the desired
windowed sinusoid

Fig. 7.7 Time response after
modal filter applied

modal filtered response is shown from a shaker input in Fig. 7.7. Figure7.8 shows
hardware which was tested for nonlinearities of the type described here.

After the high-level burst signal is applied, the data are reduced to one q through
the modal filter. The frequency domain RFS nonlinear parameter fitting process
described earlier can then be applied. Experience has shown that if the nonlinearity
excited by thismethod becomes severe enough to create impact and rattle, themethod
is not adequate for such cases. In other cases, it has worked well.
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Fig. 7.8 Hardware
demonstrating weak
nonlinearity due to bolted
interfaces
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